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Magnetic reconnection 

 Violation of the frozen-in condition in 
thin boundaries (current sheets) 
 

 Consequences: 
• magnetic topology change (E||) 
• plasma transport across boundaries 
• plasma acceleration (alfvenic jets) 
• plasma heating 
• supra-thermal particle acceleration 
 

 Importance of scales (collisionless): 

 

 

[ adopted from Paschmann, Nature, 2006] 

d_MHD ( >> i) ~ 103 km 

d_ion ( ~ i ) ~ 50 km 

d_electron ( ~ e) ~ 1 km 

Hall electron  

pressure    
 

electron  
inertia   
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E' = E+u x B = 0 

E||=0 

 
 

 

 

E' = E+u x B  0 

E||≠0 
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D  d  L  D 
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[Matthaeus & Lamkin, Phys. Fluids, 1986] 

Magnetic field lines Current density 

2D MHD simulation 

Reconnection in turbulent plasma 

[Shibata +, Science, 2007] 

L ~ 103 km << Ls 

[Dmitruk & Matthaeus, Phys. Plasmas, 2006] 

L << Ls  

Ls 

L 

Many different simulations supports this 
scenario (MHD, Hall-MHD, PIC, Vlasov):  
Servidio 2009, Servidio 2011, 
Camporeale2011,  Wan 2012, Karimabadi 
2013, Haynes 2014, Valentini2014, Wan 2015 
 
In situ data limited 



Proton heating 
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• important proton heating in régions 
of strong gradients  having scale ~ i 
e.g.  regions of high current (current 
sheets) 
 
• proton distribution function highly 
anisotropic  

[courtesy F. Valentini] 



Ion heating 

01.06.15 alessandro.retino@lpp.polytechnique.fr 6 

• strong  ion heating in  current 
sheets having scale ~ i  
 
• increase in temperature is more 
efficient for alphas than for protons 

[Perrone+, ApJ., 2013; Perrone+, E. Phys. J. D, 2014] 



Electron heating 
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[Haynes+, ApJ,2014] 

• electron heating within thin current sheets  
 
• anisootropy expected around reconnection sites 

[Camporeale+, ApJ,2011] 



Non-thermal particle acceleration 

see also [Matthaeus+, PRL, 1984; Dmitruk+, JGR, 2006; Drake+, Nature, 2006; Hoshino, PRL, 
2012, Zank+, ApJ, 2014] 
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[Matsumoto+, Science, 2015] 

energetic ions 
[Karimabadi+, Phys. Plasmas, 2013] 

 strong non-thermal particle acceleration at kinetic scales 



Partition of dissipated energy 
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[Karimabadi+, Phys. Plasmas, 2013] 

 Partition between species (electrons, protons, heavy ions) 
 Partition between energy ranges (thermal, supra-thermal, energetic) 

see Eastwood+, PRL, 2012 for magnetotail reconnection case 



In situ evidence  
quasi-|| quasi- 

reconnecting current sheets 

[Retinò+, Nature Physics, 2007] 
 

See also [Gosling+, ApJL, 2007; Chian+, ApJL, 2011; Perri+, PRL, 2012; Osman+, PRL, 2014] 
 

dN/N ~ 1 

dB/B ~ 1 

energetic ions 



In situ evidence (II) 

[Retinò+, Nature Physics, 2007] 

energy dissipation 

electron heating 

plasma acceleration 

rate ~ 0.1 (fast) 



Turbulent energy dissipation in thin 

current sheets 

inertial range 

dissip range 
B 

E' 

alfvenic turbulence 

[Sundkvist +, PRL, 2007] 

 alfvenic turbulence with steeper 
spectrum below proton scales 

 
 intermittency at scales li - i ( close to 

dissip. range) related to small-scale 
magnetic islands and current sheets 
 

 dissipation in thin current sheets with 
d~ li comparable to wave damping 
around wci -> turbulent reconnection 
competing mechanism for energy 
dissipation at ion scales 
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Quasi-parallel shock turbulence 

[Reynoso+, AJ, 2013] 

most efficient particle acceleration and generation of magnetic 
turbulence is attained for  quasi-par shocks  while inefficient acceleration 
and little to no generation of magnetic turbulence obtains for the quasi 
perpendicular case. 

 

SN 1006 



Numerical simulations 
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[Karimabadi+, Phys. Plasmas, 2014] 
 
 

Zoo of structures such as magnetic islands, current sheets, shocklets, 
vortexes 

 
Reconnecting current sheets play important role for dissipation 

 

 

 



Electron heating in thin current sheets (1) 
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[Chasapis+, ApJLett., 2015]c 
 

 First evidence of local electron heating in thin cureent sheets within 
turbulence. Current sheets have scales  di 

 
  Two distinct populations: (1) 85% with 1<PVI<3 (mostly low shear angle) 

(2)  high PVI >3 with relatively large shear angles. Very high PVI > 5 
cases correspond to shear angles larger than 90°. 

 

 

PVI [Greco+, GRL, 2008) 



Electron heating in thin current sheets (2) 
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 no significant heating occurs in low PVI structures (<3) 

 
 important heating occurs in high PVI >3 structures 

 
 very high PVI >5 current sheets show the strongest heating and most are 

consistent with reconnection 
 

 results consistent with earlier statistical studies [Osman+,ApJL, 2011] 

 

 

[Chasapis+, ApJLett., 2015] 



Kelvin-Helmoltz turbulence 
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Important energy dissipation mechanism in presence of shear flows 

[Foullon+, ApJ, 2011] 



Numerical simulations 
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[Karimabadi+, Phys. Plasmas, 2013] 

[Wan+,PRL, 2012] 

Heating strongly 
intermittent heating 
at kinetic scales 



Two-fluid simulations  

 All quantities are normalized to proton quantities 
 
 Periodic in Y (shear flow), open in X 
 
 Numerical dissipation achieved by using filters [Lele, J. Comp. Phys.,1992] 

 

∂n
∂ t

+∇ (nU )=0Continuity 

equation: 

∂nU
∂ t

=−∇⋅[n(UU )+Ptot−BB]Motion equation of motion 

(protons, electrons): 

∂(nSe ,i)

∂ t
=∇⋅(nSe ,iue , i)=0

Se ,i=Pe ,in
−γ γ=5/3

Adiabatic closures (for 

both ions ions and 

electrons: 

Generalized Ohm's law : E=−ui∧B+
J∧B
n

−1
n

∇ Pe=ue∧B−1
n

∇ Pe
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B=B
0
(x)sin(θ) ê y+B0(x)cos(θ) êz

B
0
(x)=B

0
=1.0

n(x)=n
0
=1.0

T i(x)=T e(x)=0.5

θ=0.02

U=Aeq tanh(x−xcLeq )ê y
Leq=6 diAeq=1

N x×N y=4096×8192

Initial conditions 



Generation of turbulence  
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Passive Tracer 

Current Jz: 

[Rossi+, submitted to Phys. Plasmas, 2015] 
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Magnetic energy spectrum 

 Isotropic flutuations at 
suffiently large time tan2 
(qshebalin ) ~ 1  

 
 Injection scale ~ vortex 

scale 
 

 Spectrum in inertial range 
compatible with 
Kolmogorov scaling 
 

 Steeper spectrum below 
proton scale. Higher slope 
than found in PIC 
simulations but compatible 
with space observations 
[Alexandrova+, SSR, 
2013; Sahraoui+, ApJ, 
2013] 

 

 

k
-1.8 

k
-3.8 



Intermittency 

 Scale-dependent 
deviation from 
gaussianity 
(intermittency) 
 

 Tails of PDF 
associated  to 
small-scale 
coherent structures 
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Identification of current sheets 

 Current sheets identified trhough 
PVI [Greco+, JGR, 2008] 

 
 Strongest current sheets have scale 

~ 1 di and are expected to be 
reconnection sites 
[Servidio+,JGR,2011] 
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Reconnection signatures 

 Magnetic topology and flows consistent with ongoing reconnection with guide 
ffield Bz/By ~ 5 
 

 Reconnection rate 0.15 – 0.3 consistent with fast reconnection. Rates are 
higher than expected for Hall reconnection in single sheets [Huba+, 2004; 
Pritchett+, 2004] but consistent with with rates found in turbulent reconnection 

[Servidio+, PRL, 2009]. Rates possibly enhanced by turbulence.  
 



Curent/future spacecraft data relevant for 

reconnection & turbulence 

 
NASA/MMS [http://mms.gsfc.nasa.gov]: 2015-- near-Earth space 
Goal: the physics of reconnection at electron scales (also turbulence, 
particle acceleration) 
 
 
ESA/SolarOrbiter [http://sci.esa.int/solarorbiter]: 2018-- near-Sun corona     (62 
Rs). Goals: solar wind acceleration, coronal heating, production of energetic 
particles (turbulence, reconnection) 
 
 
NASA/SolarProbePlus [http://solarprobe.gsfc.nasa.gov]: 2018 -- near-Sun 
corona (8.5 Rs). Goals: similar to SolarOrbiter 
 
ESA/THOR: mission concept submitted to ESA M4 call fully dedicated to 
study turbulent energy dissipation at kinetic scales (under evaluation) 

 
 


