

Turbulent energy dissipation in thin reconnecting current sheets

A. Retinò¹, A. Chasapis¹, C. Rossi^{1,2}, F. Sahraoui¹, F. Califano², Luca Sorriso-Valvo³, D. Sundkvist⁴, A. Vaivads⁵, Y. Khotyaintsev⁵, P. Henri⁶, A. Greco³, F. Valentini³, S. Servidio³, P. Canu¹, L. Rezeau¹

(1) LPP, France (2) University of Pisa, Italy (3) University of Calabria, Italy (4) SSL, Berkeley, USA (5) IRFU, Uppsala, Sweden (6) LPC2E, Orleans, France

Meudon Turbulence Workshop 2015 May 26-29, 2015

Outline

- Reconnection & turbulence
 - Ion and electron heating
 - Non-thermal particle acceleration
 - Partition of energy
- Thin reconnecting current sheets:
 - quasi-parallel shock
 - Kelvin-Helmoltz vortexes
- Current/future spacecraft data relevant for turbulent reconnection studies
- Summary

Magnetic reconnection

 Violation of the frozen-in condition in thin boundaries (current sheets)

- Consequences:
 - magnetic topology change (E_{||})
 - plasma transport across boundaries
 - plasma acceleration (alfvenic jets)
 - plasma heating
 - supra-thermal particle acceleration
- Importance of scales (collisionless):

$$\begin{array}{l} d_{_MHD} (>> \rho_i) \sim 10^3 \ km \\ \\ d_{_ion} (\ \sim \rho_i \) \sim 50 \ km \\ \\ \\ d_{_electron} (\ \sim \rho_e) \sim 1 \ km \end{array}$$

[adopted from Paschmann, Nature, 2006]

Reconnection in turbulent plasma

[Matthaeus & Lamkin, Phys. Fluids, 1986]

Many different simulations supports this scenario (MHD, Hall-MHD, PIC, Vlasov): Servidio 2009, Servidio 2011, Camporeale2011, Wan 2012, Karimabadi 2013, Haynes 2014, Valentini2014, Wan 2015

In situ data limited

[Dmitruk & Matthaeus, Phys. Plasmas, 2006]

[Shibata +, Science, 2007]

L << Ls

Proton heating

- important proton heating in régions of strong gradients having scale ~ ρ_i e.g. regions of high current (current sheets)
- proton distribution function highly anisotropic

[courtesy F. Valentini]

Ion heating

• strong ion neating in curren sheets having scale ~ ρ_i

[Perrone+, ApJ., 2013; Perrone+, E. Phys. J. D, 2014]

• increase in temperature is more efficient for alphas than for protons

Electron heating

- electron heating within thin current sheets
- anisootropy expected around reconnection sites

Non-thermal particle acceleration

strong non-thermal particle acceleration at kinetic scales

see also [Matthaeus+, PRL, 1984; Dmitruk+, JGR, 2006; Drake+, Nature, 2006; Hoshino, PRL, 2012, Zank+, ApJ, 2014]

Partition of dissipated energy

- Partition between species (electrons, protons, heavy ions)
- Partition between energy ranges (thermal, supra-thermal, energetic)

see Eastwood+, PRL, 2012 for magnetotail reconnection case

In situ evidence

See also [Gosling+, ApJL, 2007; Chian+, ApJL, 2011; Perri+, PRL, 2012; Osman+, PRL, 2014]

In situ evidence (II)

[Retinò+, Nature Physics, 2007]

Turbulent energy dissipation in thin current sheets

- alfvenic turbulence with steeper spectrum below proton scales
- intermittency at scales λ_i ρ_i (close to dissip. range) related to small-scale magnetic islands and current sheets
- dissipation in thin current sheets with d~ λ_i comparable to wave damping around ω_{ci} -> turbulent reconnection competing mechanism for energy dissipation at ion scales

Quasi-parallel shock turbulence

most efficient particle acceleration and generation of magnetic turbulence is attained for quasi-par shocks while inefficient acceleration and little to no generation of magnetic turbulence obtains for the quasi perpendicular case.

Numerical simulations

[Karimabadi+, Phys. Plasmas, 2014]

Zoo of structures such as magnetic islands, current sheets, shocklets, vortexes

Reconnecting current sheets play important role for dissipation

Electron heating in thin current sheets (1)

- First evidence of local electron heating in thin cureent sheets within turbulence. Current sheets have scales ≤ d_i
- Two distinct populations: (1) 85% with 1<PVI<3 (mostly low shear angle)
 (2) high PVI >3 with relatively large shear angles. Very high PVI > 5 cases correspond to shear angles larger than 90°.

Electron heating in thin current sheets (2)

- no significant heating occurs in low PVI structures (<3)
- important heating occurs in high PVI >3 structures
- very high PVI >5 current sheets show the strongest heating and most are consistent with reconnection
- results consistent with earlier statistical studies [Osman+,ApJL, 2011]

Kelvin-Helmoltz turbulence

Important energy dissipation mechanism in presence of shear flows

Numerical simulations

[Wan+,PRL, 2012]

Heating strongly intermittent heating at kinetic scales

Two-fluid simulations

Continuity equation:

Motion equation of motion (protons, electrons):

Adiabatic closures (for both ions ions and electrons:

$$\frac{\partial n}{\partial t} + \nabla(n \mathbf{U}) = 0$$

$$\frac{\partial n \boldsymbol{U}}{\partial t} = -\nabla \cdot [n(\boldsymbol{U}\boldsymbol{U}) + P_{tot} - \boldsymbol{B}\boldsymbol{B}]$$

$$\frac{\partial (nS_{e,i})}{\partial t} = \nabla \cdot (nS_{e,i} \boldsymbol{u}_{e,i}) = 0$$
$$S_{e,i} = P_{e,i} n^{-\gamma} \qquad \gamma = 5/3$$

$$\boldsymbol{E} = -\boldsymbol{u}_i \wedge \boldsymbol{B} + \frac{\boldsymbol{J} \wedge \boldsymbol{B}}{n} - \frac{1}{n} \nabla \boldsymbol{P}_e = \boldsymbol{u}_e \wedge \boldsymbol{B} - \frac{1}{n} \nabla \boldsymbol{P}_e$$

- All quantities are normalized to proton quantities
- Periodic in Y (shear flow), open in X
- Numerical dissipation achieved by using filters [Lele, J. Comp. Phys., 1992]

Initial conditions

$$U = A_{eq} \tanh\left(\frac{x - x_c}{L_{eq}}\right) \hat{e}_y$$

$$A_{eq} = 1 \quad L_{eq} = 6 \, d_i$$

$$B = B_0(x) \sin(\theta) \, \hat{e}_y + B_0(x) \cos(\theta) \, \hat{e}_z$$

$$\theta = 0.02$$

$$B_0(x) = B_0 = 1.0$$

$$n(x) = n_0 = 1.0$$

$$T_i(x) = T_e(x) = 0.5$$

$$U = A_{eq} \tanh\left(\frac{x - x_c}{L_{eq}}\right) \hat{e}_y$$

$$\frac{400}{300} \quad Magnetosphere}$$

$$\frac{400}{300} \quad Magnetosphere}$$

$$\frac{400}{300} \quad Magnetosphere}$$

$$\frac{500}{300} \quad Vind$$

$$\frac{100}{5} \quad 200$$

$$\frac{100}{x/d_i} \quad 300 \quad 400$$

$$N_x \times N_y = 4096 \times 8192$$

Generation of turbulence

Magnetic energy spectrum

- Isotropic flutuations at sufficiently large time tan^2 $(\theta_{shebalin}) \sim 1$
- Injection scale ~ vortex scale
- Spectrum in inertial range compatible with Kolmogorov scaling
- Steeper spectrum below proton scale. Higher slope than found in PIC simulations but compatible with space observations [Alexandrova+, SSR, 2013; Sahraoui+, ApJ, 2013]

Intermittency

- Scale-dependent deviation from gaussianity (intermittency)
- Tails of PDF associated to small-scale coherent structures

Identification of current sheets

- Current sheets identified trhough PVI [Greco+, JGR, 2008]
- Strongest current sheets have scale

 1 di and are expected to be
 reconnection sites
 [Servidio+,JGR,2011]
 24

Reconnection signatures

- Magnetic topology and flows consistent with ongoing reconnection with guide ffield Bz/By ~ 5
- Reconnection rate 0.15 0.3 consistent with fast reconnection. Rates are higher than expected for Hall reconnection in single sheets [Huba+, 2004; Pritchett+, 2004] but consistent with with rates found in turbulent reconnection [Servidio+, PRL, 2009]. Rates possibly enhanced by turbulence.

Curent/future spacecraft data relevant for reconnection & turbulence

NASA/MMS [http://mms.gsfc.nasa.gov]: 2015-- near-Earth space Goal: the physics of reconnection at electron scales (also turbulence, particle acceleration)

ESA/SolarOrbiter [http://sci.esa.int/solarorbiter]: **2018**-- near-Sun corona (62 Rs). **Goals**: solar wind acceleration, coronal heating, production of energetic particles (turbulence, reconnection)

NASA/SolarProbePlus [http://solarprobe.gsfc.nasa.gov]: 2018 -- near-Sun corona (8.5 Rs). Goals: similar to SolarOrbiter

ESA/THOR: mission concept submitted to ESA M4 call fully dedicated to study turbulent energy dissipation at kinetic scales (under evaluation)