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 A fast camera from the Nancy team (G. Bonhomme and F. Brochard) 
was installed on Tore-Supra (N. Fedorczak and P. Monier-Garbet). 

An helical Abel transform  relates the plasma light emissivity S  
to the integral of the volume emissivity received by the camera I=KS,  

where K is a compact continuous operator. 
Reconstruction of S from I is an inverse problem 

which becomes very difficult  
when S is corrupted by noise, 

then solving K-1 is an ill-posed problem. 

Tomographic inversion  
using wavelet-vaguelette decomposition  

as an alternative to SVD 
(Singular Value Decomposition). 

Fast visible light camera 
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Image tomography 



Tomography inversion in presence of noise 

Plasma light emissivity S  

Image received by the camera: integral of the volume emissivity I=KS 

Denoised plasma emissivity  
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Movie from a fast camera in Tore-Supra tokamak	
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Papers on applications to tokamaks  
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Coherent Vorticity Simulation (CVS) 



1.  Selection of the wavelet 
coefficients whose modulus  

       is larger than the threshold. 

2.  Construction of a ‘graded-tree’ 
which defines the ‘interface’ 
between the coherent and 
incoherent wavelet coefficients. 

3. Addition of a ‘security zone’ 
which corresponds to dealiasing. 

Coherent Vortex Simulation (CVS) 
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Comp. Rend. Acad. Sci. Paris, 328 



DNS CVS 

3D turbulent mixing layer 

4 eddy turnover times 
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3D turbulent mixing layer 

DNS CVS 

8 eddy turnover times 
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3D turbulent mixing layer 

DNS CVS 

12 eddy turnover times 
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Adaptive computation using wavelets  
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Motivation 

Different wavelet based tools to examine scale-dependent statistics. 

What are similarities and differences of small-scale intermittency  
in HD and MHD turbulence?  

Here we use and generalize the diagnostics introduced in  
Yoshimatsu et al., Phys. Rev. E, 79, 2009, which are based 
on the orthonormal wavelet decomposition.  



Orthogonal wavelets 

Ref.: M. Farge. Annu. Rev. Fluid Mech., 24, 1992 
         K. Schneider, O. Vasilyev. Annu. Rev. Fluid Mech., 42, 2010 



Wavelet decomposition 

with the wavelet coefficients 



Scale dependent statistics (I) 

Scale dependent energy 

Wavelet energy spectrum 

Spatial variability of the energy spectrum 
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Scale dependent statistics (II) 

Scale dependent flatness 

Link with wavelet energy spectrum and its standard deviation 

Ref.: W. Bos, L. Liechtenstein and K. Schneider. Phys. Rev. E, 76, 2007.  



Scale dependent statistics (III) 

Scale dependent helicites (kinetic, cross, magnetic) 

Scale dependent relative helicites 



DNS of MHD Turbulence 

Forced 3D incompressible MHD turbulence without mean magnetic 
field in a 2π periodic box Ω. 



Vorticity and current density 



Wavelet mean kinetic and magnetic energy spectra 
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Spatial variability of the kinetic and magnetic 
energy spectra 
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Scale dependent PDFs  

Velocity Magnetic field 



Scale dependent flatness 
of velocity and magnetic field  
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Scale dependent PDFs of relative kinetic helicity 

MHD turbulence 



Scale dependent PDFs of relative kinetic helicity 

HD turbulence 



Scale dependent PDFs of relative cross helicity 

MHD turbulence 



Scale dependent PDFs of relative magnetic helicity 

MHD turbulence 



Eulerian and Lagrangian acceleration 



Scale dependent PDFs of Eulerian acceleration 
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Scale dependent PDFs of Lagrangian acceleration 
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Scale dependent flatness of 
Eulerian and Lagrangian acceleration 

HD	
  turbulence	
  



Eulerian and Lagrangian time 
derivatives of the magnetic field 



Scale dependent PDFs of Eulerian time derivative 



Scale dependent PDFs of Lagrangian time derivative 



Scale dependent flatness of 
Eulerian and Lagrangian time derivatives 



Conclusions (I) 

•  Geometrical and scale-dependent statistics 3D MHD turbulence  
   using orthogonal wavelets 

•  Wavelet decomposition yields clear scale separation  
   spatial localization to quantify the intermittency of the flow 

•  Appplication to DNS data of stat. stat. MHD turbulence at	
  Ru
λ	
  = 150 

Results: 

•  Magnetic field more intermittent than velocity (faster increase of flatness with scale) 

•  Multiscale measures to study geometrical statistics: 

•  Relative scale-dependent kinetic, cross and magnetic helicities. 
•  Higher probability for velocity and vorticity vectors to be aligned or 
   anti-aligned, i.e., helical flow, at small scales for MHD turbulence. 



Conclusions (II) 
Analysis of scale-dependent statistics of Eulerian and Lagrangian accelerations,  
and corresponding time-derivatives of the magnetic field.  

Different dynamics of MHD compared to HD turbulent flows.  
In MHD turbulence, intermittency of the Lagrangian acc. is comparable to that of the 
Eulerian acc..  

In HD turbulence, the Lagrangian acc. exhibits substantially stronger intermittency 
than the Eulerian one.  

The Eulerian time-derivative of the magnetic field is more intermittent than the  
corresponding Lagrangian time derivative. 

Intermittency in MHD turbulence is different from HD turbulence. 

Ref.:K. Yoshimatsu, K. Schneider, N. Okamoto, Y. Kawahura and M. Farge.  
Intermittency and geometrical statistics of three-dimensional homogeneous 
magnetohydrodynamic turbulence: A wavelet viewpoint.  Phys. Plasmas, 18, 
092304, 2011. 
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