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The solar wind as a wind tunnel

Bruno & Carbone, Liv. Rev. Solar Phys., 2005/2013; Alexandrova et al.,  Space Sci. Rev., 2013; Matthaeus & Velli, Space Sci. Rev., 2011



Turbulent fluctuations in the solar wind

Early observations of magnetic spectra: turbulent solar wind. 

Evidence of radial evolution.

Coleman, 1968
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Intermittency in solar wind turbulence

Bruno and Carbone, Liv. Rev. Sol. Phys. 2005 Solar wind turbulence is

characterized by strong 

intermittency.

Intermittency:
Rare, bursty events

dominate the smaller

scales statistics, resulting

in non-Gaussian, scale 

dependent PDFs fat tails. 

Higher moments of PDFs (structure function) have scaling 

exponents that depend non-linearly on the order (K41). 

Intermittency in turbulence is due to the multifractal, 

inhomogeneous  nature of the energy cascade.

Large scale: 

nearly Gaussian

Small scale: 

heavy tails

Carbone, Ann. Geophys. 1994; Carbone et al., JGR 1996

Tu & Marsch, Space Sci. Rev. 1995; Sorriso-Valvo et al., GRL 1999



Early works and ∼established results: cascade
MHD turbulence satisfies the linear prediction for the scaling of the mixed 

third-order moment – analogous of the 4/5th law for Navier-Stokes turbulence

5

H: homogeneity, isotropy, 

stationarity and negligible 

dissipation (inertial range)

Politano & Pouquet, 
GRL 1998

Sorriso-Valvo et al., 
PRL 2007



Castaing multifractal model for intermittent PDFs

σσσ dbGLbP ),()()( ∆=∆ ∫

This can be formulated by introducing
the distribution of weights L(σ), and then

computing the convolution with generic
Gaussian of width σ, G(σ,∆b):

Multifractal picture:  each portion of space with given properties (fractal
dimension, energy transfer…) has Gaussian fluctuations (e.g. ∆b) at all scales.

The PDF is then the superposition of Gaussians, each with given width
(variance) σ, and with weight L determined by the size of each subset.

Castaing et al., Phys. D 1990; Carbone et al., Riv. Nuovo Cimento 2004



Phenomenology: lognormal variance distribution

Castaing’s main hypotheses: 

1) From dimensional considerations, the scale dependent distribution of the 

fluctuations variances σ can be associated to the energy transfer rate ε’s.

2) In the framework of a inhmogeneous multiplicative energy cascade, the 

latter can be supposed to be lognormal (using CLT, Kolmogorov 1962).

Castaing et al., Phys. D 1990; Carbone et al., Riv. Nuovo Cimento 2004
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For larger λ

Castiang distribution is a three parameter function, which are related to the 
moments of 2° (σ0), 3° (skewness factor) and 4° (λ=f(K)) order.
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Fit of PDFs with Castaing model
Castaing PDF has been successfully used to describe intermittency in plasmas

Is it possible to reproduce the intermittent PDFs self-consistently, 
without the two Castaing assumptions?

In other words: we want to check Castaing’s hypotheses.



Parameter scaling
Castaing PDF has been successfully used to describe intermittency in plasmas

[Sorriso-Valvo et al., 1999,2000,2001; Padhye et al. 2001; Pagel & Balogh 2003; Stepanova

et al. 2003; Hnat et al. 2003; Carbone et al. 2004; Leubner & Voros 2005°,b…]

An example from Cluster data:     

highly turbulent magnetosheath, 

downstream the quasi-parallel shock 

[Retinò et al. 2007; Sundqvist et al.2007] 

Power-law scaling of the 

parameter λ2∼τ-β: the scaling
exponent β=1−D gives the 

co-dimension of the most

intermittent structures

β=0.54; 0.72; 0.85
D=0.46; 0.28; 0.15



Relation with flatness
It is possible to predict the scaling of the Flatness in terms of λ2 by simply

integrating the moments of the Castaing distribution, � =
� ���(�) 	�

� �
�(�) 	�

 ,	so that

F ∼ 3σ4
0exp(2σ0λ2)

Carbone et al., 2004

F

λ2



Solar wind data: Helios 2, Ulysses

• Helios 2: 104 pts

• 81 s resolution velocity,

magnetic field and density

• Separated stationary 6 fast 

and 5 slow streams @1-0.3AU

Fast wind Slow wind

•Ulysses: 4×104 pts

• 8 min resolution velocity, 

magnetic field and density

• Stationary fast wind @3.5AU



Self-consistent distribution

Step 1: the local energy transfer rate
Proxy of the local energy transfer rate from the Yaglom relation for MHD, 

evaluated from fluctuations at the smallest (resolution) scale:

Politano & Pouquet, GRL 1995

2 4
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Inhomogeneous distribution of the energy transfer rate: intermittency.



Step 2: the distribution of ε
P(ε) is well reproduced by a Log-Normal distribution, but also (and 

better) by a stretched exponential: cccccccccccc

Compatible with the prediction of the Extreme Deviations Theory for a  

multifractal fragmentation process (multiplicative cascade).


(�) ∝ exp	(−���)

(Frisch & Sornette, J. Phys. I France, 1997)



Step 3: conditioned PDFs

PDFs of fields fluctuations conditioned to given value of ε are (roughly) 

Gaussian at all scales. This supports Castaing’s model. 

Conditioned PDFs can be fitted with Gaussian curves and their

conditioned standard deviations σ can be obtained. 

σσσ dvGLvP ),()()( ∆=∆ ∫



Step 4: self-consistent L(σ)

The distribution of variances L(σ) have been estimated self-

consistently from the dataset. The distributions are well represented

by stretched exponential. Log-normal fits are not satisfactory.

σσσ dvGLvP ),()()( ∆=∆ ∫



Check for dimensional consistency:  P(ε) vs L(σ)

It is possible to check that a very clear power-law relation exist, ε∼ σα

We find α≈3, consistent with the cubic dependence expected from the 

definition of the local energy transfer rate used here. 

This was not observed in laboratory fluids, where α=5 was instead found.

Castaing et al. 1990; Naert et al. 1998



Step 5: self-consistent Castaing PDF
The parameter-free Castaing convolution can finally be computed using

L(σ), and fitted (amplitude) to the experimental PDFs of field fluctuations.

A test to check that PDF shape cannot be 

reproduced by a random superposition of 

gaussians. 104 random realizations of L(σ) in 
the same range of the data fail to fit the PDFs

(χ2 is one order of magnitude larger)

The shape of the PDF is well reproduced.
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• A proxy of the local energy dissipation rate has been evaluated for 

three samples of solar wind, and its statistical properties described 

through log-normal and stretched exponential functions.

• PDFs of the solar wind fluctuations conditioned to the energy 

dissipation rate have been estimated: they are Gaussian at all 

scales, so that intermittency is removed.

• Variances of those Gaussian PDFs are distributed as stretched 

exponentials (not log-normal), and a cubic relationship exist 

between ε and σ.

• The empirical distributions of σ have been used to build up the PDFs 

of field fluctuations, consistently with a multifractal cascade in solar 

wind turbulence.

Conclusions

Sorriso-Valvo et al., APJ, in press


