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Plan of Talk
• Von-Karman v.s. Taylor-Green?

• Dynamo: keep the mirrors symmetries 
(that confine the flow) and drop the 
rotations (that do not allow magnetic 
dipoles)

• Singularities: use all the symmetries

• Symmetries and MHD turbulence

• Discussion



TYG vs. VKS

cylindrical box
no-slip boundaries

Cubic (impermeable) box

free-slip boundaries

Similar qualitative aspect: counter rotation in both cases, 
but:



What are the TYG 
Symmetries?

• Flow is 2-Pi periodic

• Impermeable box: x=0,Pi; y=0,Pi and 
z=0,Pi are planes of mirror 
symmetry

• Rotation by Pi around axis x=z=Pi/2 
and y=z=Pi/2

• Rotation by Pi/2 around the axis 
x=y=Pi/2



Dynamo

Giorgio Krstulovic, Gentien Thorner, Julien-Piera Vest, 
Stephan Fauve, and Marc Brachet, 

Axial dipolar dynamo action in the Taylor-Green vortex ,
 Phys. Rev. E 84, 066318 (2011)

following results are from:



Symmetries are bad for 
dynamo!

Dynamo action in the Taylor–Green vortex near threshold
C. Norea) and M. E. Brachet
Laboratoire de Physique Statistique, CNRS URA 1306, ENS Ulm, 24 Rue Lhomond,
75231 Paris Cedex 05, France

H. Politano and A. Pouquet
Observatoire de la Côte d’Azur, CNRS URA 1362, BP 229, 06304 Nice-Cedex 4, France

⇤Received 17 April 1996; accepted 10 October 1996⌃

Dynamo action is demonstrated numerically in the forced Taylor–Green ⇤TG⌃ vortex made up of a
confined swirling flow composed of a shear layer between two counter-rotating eddies,
corresponding to a standard experimental setup in the study of turbulence. The critical magnetic
Reynolds number above which the dynamo sets in depends crucially on the fundamental symmetries
of the TG vortex. These symmetries can be broken by introducing a scale separation in the flow, or
by letting develop a small non-symmetric perturbation which can be either kinetic and magnetic, or
only magnetic. The nature of the boundary conditions for the magnetic field ⇤either conducting or
insulating⌃ is essential in selecting the fastest growing mode; implications of these results to a
planned laboratory experiment are briefly discussed. © 1997 American Institute of Physics.
�S1070-664X⇤97⌃02501-9⇥

The primary objective of this Letter is to demonstrate
that a forced Taylor–Green vortex is consistent with a long
term magnetic field produced by dynamo action and to find
the critical magnetic Reynolds number for the field to be
produced. The Taylor–Green ⇤TG⌃ vortex is a standard tur-
bulent flow used in numerical computations1,2 that is related
to an experimentally studied swirling flow.3–5 The relation
between the experimental flow and the TG vortex is a simi-
larity in overall geometry:3 a shear layer between two
counter-rotating eddies. The TG vortex, however, is periodic
with free-slip boundaries while the experimental flow is con-
tained inside a tank between two counter-rotating disks. One
experiment in Gallium is planned,6 in which the magnetic
Reynolds number may be close to the critical value Rc

m

above which a dynamo sets in.
The magnetohydrodynamics ⇤MHD⌃ equations for in-

compressible fluids with “•v⌅0 and “•b⌅0 read as

⇧ tv⇤v•“v⌅⇥�0
⇥1“P⇤�⌥2v⇤j3b⇤F⇤ t ⌃, ⇤1⌃

⇧ tb⌅curl⇤v3b⌃⇤ ⌥2b, ⇤2⌃

where b is the Alfvén velocity B/A4⌦�0, �0 the constant
density, � the kinematic viscosity,  the magnetic diffusivity
and P the pressure; finally, j⌅“3b is the current density.
The governing parameter for the dynamo is the magnetic
Reynolds number defined as Rm⌅V0Lint / , where V0 is the
rms velocity and Lint the integral scale, with Pm⌅�/ the
magnetic Prandtl number. An external driving volumic force
F(t) is introduced in order to balance the energy dissipation
and reach a statistically steady state; it is chosen as

F(t)⌅ f (t)vTG, where f (t) is determined by imposing that
the (k0 ,k0 ,k0) Fourier mode of v is fixed at all times to
its initial value vTG⌅(sin(k0x) cos(k0y) cos(k0z),⇥cos(k0x)
� sin(k0y)cos(k0z), 0). A number of symmetries of vTG
are dynamically compatible with the equations of motion,1
i.e., if the initial data obeys the same symmetries than vTG,
then the solution, vs , is also symmetric. The symmetries
of vs amount,1 with k0⌅1, to the expansion vs⌅⌅m ,n ,p( û sx
� (m ,n ,p ,t) sinmx cosny cospz, û sy(m ,n ,p ,t) cosmx sinny
� cospz , û sz(m ,n ,p ,t) cosmx cosny sinpz) where ûs(m ,n ,
p ,t) vanishes unless m ,n ,p are either all even or all odd
integers. The expansion coefficients obey the additional re-
lations: û sx

(r)(m ,n ,p)⌅(⇥1)r⇤1û sy
(r)(n ,m ,p) and û sz

(r)

�(m ,n ,p) ⌅ (⇥1) r⇤1û sz
(r)(n ,m ,p), where r⌅1 when

m ,n ,p are all even and r⌅2 when m ,n ,p are all odd. The
corresponding symmetries of vs in physical space are rota-
tional symmetries: of angle ⌦ around the axis (x⌅z⌅⌦/2)
and (y⌅z⌅⌦/2); and of angle ⌦/2 around the axis
(x⌅y⌅⌦/2). There are also planes of mirror symmetry:
x⌅0,⌦ , y⌅0,⌦ , z⌅0,⌦ . The velocity and the vorticity
vs⌅“3vs are, respectively, parallel and perpendicular to
these planes that form the sides of the so-called impermeable
box which confines the flow. The kinetic helicity
hs(x)⌅vs•vs is anti-symmetric with respect to the planes of
mirror symmetries. Thus, the total helicity of the TG flow
↵hs(x)��0 when integrated over the whole periodicity box
x⌅0,2⌦ , y⌅0,2⌦ , z⌅0,2⌦ . However, locally the helicity is
strong: the eddy at the top of the impermeable box entrains
an aspirating motion upward with velocity and vorticity anti-
parallel, and similarly for the counter-rotating eddy at the
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Periodicity is good!
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Abstract. We compute numerically the threshold for dynamo action in Taylor–
Green (TG) swirling flows. Kinematic dynamo calculations, for which the flow
field is fixed to its time average, are compared to dynamical runs, with the Navier–
Stokes and induction equations jointly solved. The dynamo instability for the
kinematic calculations is found to have two branches. The dynamical dynamo
threshold at low Reynolds numbers lies within the low branch, while at high
Reynolds numbers it gets closer to the high branch. Based on these results, the
effect of the mean flow and of the turbulent fluctuations in TG dynamos are
discussed.
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Figure 2. (a) Growth rates for the kinematic dynamo generated by mean flows
computed for decreasing viscosity. Crossing the σB = 0 axis defines the Rc1,2,3

M,kin
values reported in table 1. (b) Evolution of the critical magnetic Reynolds numbers
Rc

M,kin and Rc
M,dyn with RV. Symbols: the green, blue and white parallelograms

mark the dynamo windows for the kinematic low and high modes; the smaller
symbols follow the dynamical curves (black: DNS, red: LES) plotted either in
units of RM,dyn (solid line) or in units of RM,kin (dashed line)—see text for further
details. The shaded areas indicate regions of dynamo action as obtained from the
time-average runs, in units of RM,kin. The dynamical run at RV = 928 is a 2563

DNS computation, higher Reynolds number are reached using LES). Note that
the lowest PM for a dynamo is 10−2.

has been found so far (see e.g. [14, 30] and references therein). In the case of coherent forcing,
both excitation of magnetic field lines at scales smaller than the forcing scale (with all Fourier
modes growing with the same growth rate), and excitations of large-scales magnetic fields (which
keep growing after the small-scales saturate) are observed [12]. This suggests that the mean flow
associated with the coherent forcing plays an important role to obtain an asymptotic behaviour of
Rc

M for PM < 1. However, the effect of the turbulent fluctuations on the value of Rc
M and dynamo

action is harder to elucidate and to separate from the effect of the mean flow.
For kinematic simulations using the time-averaged flow, we found the existence of two

distinct dynamo branches—a behaviour already revealed in the ABC flow [15]. As shown in
figure 2(a), the kinematic growth rate is positive in the interval [Rc1

M,kin, R
c2
M,kin] ≈ 22, 50, and

then again for RM,kin > Rc3
M,kin ≈ 160. Beyond Rc3

M,kin the growth rate seems to be monotonously
increasing with RM. We call the interval [Rc1

M,kin, R
c2
M,kin] the ‘first dynamo window’ (the

corresponding interval is shaded in figure 2(b)). We observe this window is essentially
independent of the mechanical Reynolds number RV,dyn from which the time-averaged flow is
generated. The threshold for the upper dynamo branch—Rc3

M,kin—also appears to be independent
of the kinetic Reynolds number; we have observed that it remains within 15% of the value
⟨Rc3

M,kin⟩ ≈ 160 when RV is varied across our explored range [10, 104].
Essential findings in this paper come from the comparison of the above kinematic behaviour

with the results obtained for the dynamo thresholds computed for the dynamical fields. The data

New Journal of Physics 9 (2007) 296 (http://www.njp.org/)
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A (simple?) idea

• Keep the mirror symmetries that do 
confine the flow

• Drop the axis of rotation that do not allow 
for dipolar fields within the impermeable 
box 

• How to generalize for magnetic field?



Mirrors



Mirrors
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Mirrors

mag. 

boundary is 

either  

I or

C



Projectors

  I or

C



Velocity must be  C 
magnetic boundaries:  I/C

• Flow is confined

• Isolating/Conducting boundaries 
perpendicular to x, y or z

• 8 possible cases: 2x2x2, but 2 couples 
among them are exchanged by Pi/2 rotation 
around the x=y=Pi/2 axis

• Therefore there are 6 independent cases!



Numerical procedure



Spontaneous 
confinment breaking

B=0 run: 

with and without 

confinement  p
rojectio

n



Spontaneous Pi/2 
rotation  breaking

B=
0 r

un
: 

with
 co

nfi
ne

men
t  

pr
oje

cti
on



Magnetic boundary 
conditions and dynamo 

threshold



ICI, ICC, IIC, CCC and 
CCI cases



III



Codimension-2 
bifurcation model



Perspectives on 
Dynamo

• Rotations are bad and mirrors are good!

• Usual non-axial TYG growing mode 
obtained 

• Axial dipoles also obtained (at higher Rmc) 
in case III

• Supercritical dynamo and velocity pitchfork

• Simple codim-2 model with bistability



 Turbulence in TYG-
symmetric MHD flows

Giorgio Krstulovic, Marc E. Brachet, and Annick Pouquet, Forced magnetohydrodynamic 
turbulence in three dimensions using Taylor-Green symmetries, Phys. Rev. E 89, 043017 (2014)

Marc Brachet, Miguel Bustamante, Giorgio Krstulovic, Pablo Mininni, Annick Pouquet and Duane 
Rosenberg, Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green 

symmetries, Phys. Rev. E 87, 013110 (2013)

Pouquet A., Lee E., Brachet ME., Mininni PD., and Rosenberg D., The dynamics of unforced 
turbulence at high Reynolds number for Taylor-Green vortices generalized to MHD, Geophysical 

& Astrophysical Fluid Dynamics, 104: 2 (2010)

Lee E., Brachet ME., Pouquet A., Mininni PD., and Rosenberg D., Paradigmatic flow for small-scale 
magnetohydrodynamics: Properties of the ideal case and the collision of current sheets, Phys. 

Rev. E 78, 066401 (2008) 

several papers over the last 
few years…



Symmetries are not 
broken in these 

problems…
• In turbulent decay runs TYG symmetries 

are not broken

• Using a code that implements the 
symmetries gains a large factor in 
resolution

• Will now explain method and show a few 
results



Numerical method



Symmetries are not 
broken!!!



Singularity problem



Forced MHD 
turbulence



Discussion/conclusion
• Large scale symmetries are useful 

• They can be used to specify types of 
boundaries

• They can also be used to maximize the 
ratio of large to small scale

• After all periodicity itself is a symmetry of 
the large scales!

• These points should be taken into account 
when planning a long DNS…


