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Plan of Talk

® Von-Karman v.s. Taylor-Green?

® Dynamo: keep the mirrors symmetries
(that confine the flow) and drop the
rotations (that do not allow magnetic
dipoles)

® Singularities: use all the symmetries
® Symmetries and MHD turbulence

® Discussion



TYG vs.VKS

Similar qualitative aspect: counter rotation in both cases,
but:

Cubic (impermeable) box cylindrical box

free-slip boundaries no-slip boundaries



What are the TYG
Symmetries!

® Flow is 2-Pi periodic

® |mpermeable box: x=0,Pi; y=0,Pi and
z=0,Pi are planes of mirror
symmetry

® Rotation by Pi around axis x=z=Pi/2
and y=z=Pi/2

® Rotation by Pi/2 around the axis
x=y=Pi/2



Dynamo

following results are from:

Giorgio Krstulovic, Gentien Thorner, Julien-Piera Vest,
Stephan Fauve, and Marc Brachet,
Axial dipolar dynamo action in the Taylor-Green vortex,

Phys. Rev. E 84, 066318 (201 1)



Symmetries are bad for
dynamo!

Dynamo action in the Taylor—-Green vortex near threshold

C. Nore? and M. E. Brachet
Laboratoire de Physique Statistique, CNRS URA 1306, ENS Ulm, 24 Rue Lhomond,
75231 Paris Cedex 05, France

H. Politano and A. Pouquet
Observatoire de la Cote d’Azur, CNRS URA 1362, BP 229, 06304 Nice-Cedex 4, France

(Received 17 April 1996; accepted 10 October 1996)

Dynamo action is demonstrated numerically in the forced Taylor—Green (TG) vortex made up of a
confined swirling flow composed of a shear layer between two counter-rotating eddies,
corresponding to a standard experimental setup in the study of turbulence. The critical magnetic
Reynolds number above which the dynamo sets in depends crucially on the fundamental symmetries
of the TG vortex. These symmetries can be broken by introducing a scale separation in the flow, or
by letting develop a small non-symmetric perturbation which can be either kinetic and magnetic, or
only magnetic. The nature of the boundary conditions for the magnetic field (either conducting or
insulating) is essential in selecting the fastest growing mode; implications of these results to a
planned laboratory experiment are briefly discussed. © 1997 American Institute of Physics.
[S1070-664X(97)02501-9]
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Periodicity is good!
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A (simple?) idea

® Keep the mirror symmetries that do
confine the flow

® Drop the axis of rotation that do not allow
for dipolar fields within the impermeable
box

® How to generalize for magnetic field?



Mirrors

S'(r1,r2,1m3) = (—r1,72,73), (9)
Sz(rlsr'Za TS) - (Tla —T2,7'3), (10)
S:;(Tl,'l‘z,r;;) = (T],T‘g, '—T;;). (11)

Note that S® is its own inverse.
The action of the reflection operation on a vector field
h(r) is defined by
R%(h(r)) = S®h(S“r) (12)
which explicitly reads, in the case of the the z = 0 plane:
hl’(zsy:‘z) hfr(xsya —z)
R* hy(x,y,z) = hy(zay, —z) : (13)

hz(zayaz) —hz(:c,y,—z)

The action of the reflection operation on a vector field
h(r) is defined by

R°(h(r)) = S°h(S°r) (12)



Mirrors

v+ (VXV)xv

1 - —
~V(P + §v'~’) +(Vb) x b

+rAv + R*f (17)
V x (¥ x b) + 5Ab, (18)

O:b

with P(r) = P(S“r). Therefore the only symmetry of
the velocity that is compatible with the MHD equations
(1-2) is R*f = f and v = v. This can be easily under-
stood with the following simple geometrical argument.




Mirrors



Projectors

Let us now define the projectors into symmetric func-
tions with respect to the planes r; = 0 and r; = ,

1 (813
= (I - sR?), (19)

where a stands for z,y, z, R* is defined by Eq.(12) and
s = +1. Note that by construction R*(Q%h) = —sQ%h
and therefore @7 h is an even vector (if s = +1) or odd
vector (s = —1) with respect to the planes r, = 0 and
To = T,

=Q,,Q:, Q5 (20)

with &= (s,,.,sy,sz) € {—1,1}3. Note that by construc-
tion

P(—l,—l ) TG V G (21)

ditions. If the magnetic field is even with respect to one
of the mirror-symmetry planes, we call this plane a insu-
lating (I) wall because the current j = V X b is parallel
to (or contained in) the wall [17]. Analogously if b is odd
the wall is called conducting (the current is perpendicular
to (or crosses) the wall.

| or



Velocity must be C
magnetic boundaries: |/C

® Flow is confined

® |solating/Conducting boundaries
perpendicular to x,y or z

® 8 possible cases: 2x2x2, but 2 couples
among them are exchanged by Pi/2 rotation
around the x=y=Pi/2 axis

® Therefore there are 6 independent cases!



Numerical procedure
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FIG. 1: a) Magnetic energy spectrum of a dynamo run: case
III with Re = 30, Re., = 80. b) Corresponding temporal evo-
lution of magnetic energy (3). The fits used to determine
oy = 0.017 and dkmax = 10.72 (for the present simulation)
are displayed as (dashed) straight lines of Figs. a) and b).

GHOST [19], that is dealiased by spherical spectral trun-
cation using the 2/3-rule [20]. Thus a run with resolution
N3 has a maximum wavenumber k., = N/3. Resolu-
tions used in this works vary from 642 to 256°. The equa-
tions are evolved in time using a second-order Runge-
Kutta method, and the code is fully parallelized with the
message passing interface MPI library. We implemented
into GHOST both the constant velocity forcing (7) and
the projectors (20).

The TG vortex (8) is used as initial data for Eq.(1),

eventually adding a small non-symmetric random part

when studying symmetry breaking (see below section
IITB). A small, spectrally band-limited random seed of

given magnetic energy is used as initial data for Eq.(2).



Spontaneous
confinment breaking
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FIG. 2: (Color online) a) Temporal evolution of kinetic energy
with and without confinement (21) imposed at Re = 30. b)
Dependence of kinetic energy on the Reynolds number for the
symmetric solid (red) line and non-symmetric dashed (blue)
line runs (time-averaged over statistically stationary values).



Spontaneous Pi/2

rotation breaking ¢
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FIG. 3: (Color online) a) Bifurcation diagram: kinetic energy
E.(k = 2) as function of Re. A pitchfork bifurcation is clearly
present (E.(k = 2) is quadratic in the bifurcating mode v''").
b-¢) Visualization of Taylor-green stationary states at Re =
30: non-bifurcated (b) and bifurcated (¢) velocity fields.
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FIG. 5: (Color online) Dynamo growth rates o (symmetric
velocity field) as function of the magnetic Reynolds number
Re: for the 6 possible symimetries of the magnetic field at
kinetic Reynolds number Re = 30 (a) and Re = 150 (b).
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FIG. 6: (Color online) Dynamo growth rates o, (symmetric
velocity field) obtained with a non-symmetric magnetic field
compared with the CIC magnetic symmetric case. Kinetic
Reynolds number Re = 30 (a) and Re = 150 (b).



|ICI, ICC, lIC, CCC and
CCl cases

FIG. 7: (Color online) 3D visualizations (magnetic field in
red, current in yellow and density plot of highest magnetic
energy zones) of the growing modes: (a) Case v symmetric
and b non-symmetric, Ren, = 10. (b) ICI case, Ren, = 10.

FIG. 8: (Color online) 3D visualizations (magnetic field in
red, current in yellow and density plot of highest magnetic
energy zones) of the growing modes: (a) ICC case, Re... = 30
(b) IIC case, Ren = 80, (¢) CCC case, Re.. = 300, (d) CCI
case, Rey, = 300.




Case|/ICI|ICC|IIC|III|CCC|CCI
ReS | 9 | 26 | 66|73 231 | 254




Codimension-2
bifurcation model

Denoting by A(t) the real amplitude of the bifurcating
velocity field v'Y and B(t) the real amplitude of the bi-
furcating magnetic field b, we write coupled amplitude
equations for A and B in the vicinity of the codimension-
two bifurcation. The form of these equations is con-

strained by symmetry requirements, A — —A (pitchfork
bifurcation of the velocity field) and B — —B (b — —b

symmetry of the MHD equations).
Keeping the nonlinear terms to leading order, we get

A = M —aAB? — A3,
B = uB— BA%’B — B®. (29)

The coefficients of the cubic nonlinearities have been

8 taken negative in order to get supercritical pitchfork bi-
furcations for the hydrodynamic instability in the ab-
x_,  sence of magnetic field (B = 0) and for the dynamo in-

A ' A

stability when Re < Re® and thus A = 0. The modulus
of these coefficient can be taken equal to 1 by appropriate
scalings of the amplitudes A and B. A and u are functions
of Re and Re,, that vanishes at the codimension-two bi-

fHaireatinn naint (RPoC RPoC Y Ta loading nardor woe havo




Perspectives on
Dynamo

Rotations are bad and mirrors are good!

Usual non-axial TYG growing mode
obtained

Axial dipoles also obtained (at higher Rmc)
in case |l

Supercritical dynamo and velocity pitchfork

Simple codim-2 model with bistability



Turbulence in TYG-
symmetric MHD flows

several papers over the last
few years...

Giorgio Krstulovic, Marc E. Brachet, and Annick Pouquet, Forced magnetohydrodynamic
turbulence in three dimensions using Taylor-Green symmetries, Phys. Rev. E 89,043017 (2014)

Marc Brachet, Miguel Bustamante, Giorgio Krstulovic, Pablo Mininni, Annick Pouquet and Duane

Rosenberg, Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green
symmetries, Phys. Rev. E 87,013110 (2013)

Pouquet A, Lee E., Brachet ME., Mininni PD., and Rosenberg D., The dynamics of unforced
turbulence at high Reynolds number for Taylor-Green vortices generalized to MHD, Geophysical
& Astrophysical Fluid Dynamics, 104:2 (2010)

Lee E., Brachet ME., Pouquet A., Mininni PD., and Rosenberg D., Paradigmatic flow for small-scale

magnetohydrodynamics: Properties of the ideal case and the collision of current sheets, Phys.
Rev.E 78,066401 (2008)



Symmetries are not
broken in these
problems...

In turbulent decay runs TYG symmetries
are not broken

Using a code that implements the
symmetries gains a large factor in
resolution

Will now explain method and show a few
results



Numerical method

The simulations reported in this paper were performed
using a special purpose symmetric parallel code devel-
oped from that described in [13) 14]. The workload for
a timestep is (roughly) twice that of a general periodic
code running at a quarter of the resolution. Specifically,
at a given computational cost, the ratio of the largest
to the smallest scale available to a computation with en-
forced Taylor-Green symmetries is enhanced by a factor
of 4 in linear resolution. This leads to a factor of 32
savings in total computational time and memory usage.
The code is based on FFTW and a hybrid MPI-OpenMP
scheme derived from that described in [15]. The runs
were performed on the IDRIS BlueGene/P machine. At
resolution 4096” we used 512 MPI processes, each process
spawning 4 OpenMP threads.




Symmetries are not
broken!!!

(b)

Figure 2. Visualization (VAPOR software, Clyne ef al. 2007) of the current density inside the [0, 7]> box for
runs on grids of 5127 points; full DNS (a) and code with symmetries (b). There is also a strong current sheet
on the walls (not shown).



Singularity problem
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FIG. 10. (Color online) Perspective volume rendering using the VAPOR software [54,55] of the vorticity (left) and of the current density
(middle) at + = 2.54. Note the occurrence of a double layer structure due to the collision and subsequent joining of two sheets. At a later time
(r = 2.65; right), the magnetic field lines taken on these two colliding sheets all go to the same location, which coincides with the maximum

of the current (coordinates given in the table), implying sharp localized bending (and possibly torsion) of magnetic field lines in the vicinity of
that maximum.



Forced MHD
turbulence

FIG. 8. (Color online) Visualizations of the magnetic energy at the end of the runs. Left: run C2. Center: run /. Right: run A.



Discussion/conclusion

Large scale symmetries are useful

They can be used to specify types of
boundaries

They can also be used to maximize the
ratio of large to small scale

After all periodicity itself is a symmetry of
the large scales!

These points should be taken into account
when planning a long DNS...



