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Choice of the appropriate representation

It could be interesting, in communication theory, to represent an
oscillating signal by a superposition of elementary wavelets, each of
them having both a frequency and a time localization quite well
defined. The useful information is indeed often carried by both the
emitted frequencies and by the time structure of the signal (music is
a characteristic example of that). The representation of a signal as
function of time cannot exhibit the frequency content, while in
contrast its Fourier analysis hides the time of emission and the
duration of each elements of the signal. An adequate representation
should combine the advantages of these two complementary
descriptions, while providing a discrete character appropriate to the
theory of communication.’ Roger Balian

Un principe d'incertitude
fort en théorie du signal
CRAS, 292, 11 (1981)



Representation for music
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Integral transforms
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Optimal phase space tiling

Gabor
(1946)

Space-wavenumber
representation

Wavelets
(1984)
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Choice of the analyzing wavelet

Admissibility condition
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Jean Morlet Y —°° Alex Grossmann

Analyzing wavelet family
generated by translation (b)
and dilation (?
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Continuous wavelet transform (CWT)

Analysis
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Synthesis
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Wavelet representation
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2D continuous wavelet transform

Romain
Murenzi

Jean-Pierre
Antoine

— n =

2D Morlet mother wavelet N4 " \ )

The wavelet family is generated
by translating, dilating and rotating

the 2D mother wavelet
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Reproducing kernel of the CWT

The CWT of a Gaussian white noise
reveals its reproducing kernel
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The is the correlation between the wavelets which
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Wavelet frame

We can then select a finite number of wavelets
restricted to a discrete grid optimally chosen such that
the wavelet family associated to this grid constitutes
a quasi-orthogonal basis =—> a wavelet frame
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Orthogonal wavelet transform

N Wavelet analysis : | |
fii = Wyl £) witn s = 27724(2x — 3)

Wavelet synthesis :

f= ) (bl f)w;
VK

A signal sampled on N points is
wavelet analyzed and synthetized in CN operations
if one uses compactly-supported wavelets
computed from a quadratic mirror filter of length M.



Examples of orthogonal wavelets
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2D orthogonal wavelets

Scaling function Wavelet

o\ v
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Coarse Horizontal
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Diagonal
details
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3D orthogonal wavelets

A 3D vector field v(x) sampled on \V = 237 equidistant grid points

Uy (a) 3D wavelet — orthogonal wavelet series

Z vaUs(x), vy = {(v.Uy)

AEA

A= {)\ = (Jytpn, b, )‘(w) J—1,i,=0,...,22 —1,n=1,2,3, and p = 1, ...,7}

N ;= 7 x 277 , wavelet coefficients at a scale indexed by |

fast algorithm with linear complexity
no redundancy between the coefficients

We use Coifman 12 wavelet
compactly supported with four vanishing moments.



Orthogonal wavelet representation

Wavelets UJ
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Academic example
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Linear approximation
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Nonlinear approximation
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Continuous / orthogonal wavelets

Analyzing functions are

translates and dilates }\
of an oscillating function (of zero mean)

Well localized in both space and wavenumber

~

f(lv f) — <¢l,a‘3"f>

Continuous wavelets
1 T —

¢l,a?(33’)=m¢( / )

Orthogonal wavelets
¢j7i(x/) = 2j/2¢(2j$/ — Z)

 Translates and dilates
vary continuously
» Redundant representation

* Translates and dilates are

on a discrete dyadic grid

* Orthogonal basis

 Coefficients are easy to read
» Unfold in both space and scale
» Good for analysis

 Coefficients not easy to read
» sampled on a dyadic grid
e For filtering and compression




How to extract coherent structures?

Since there is not yet a universal definition of coherent structures
which emerge out of turbulent fluctuations due to the nonlinear interactions,
we adopt an apophetic method :
instead of defining what they are, we define what they are not.

For this we propose the minimal statement :
‘Coherent structures are not noise’

—

Extracting coherent structures becomes a denoising problem,
not requiring any hypotheses on the structures themselves
but only on the noise to be eliminated.

Choosing the simplest hypothesis as a first guess,
we suppose we want to eliminate an additive Gaussian white noise,
and for this we use a nonlinear wavelet filtering.




Denoising using wavelets

Gaussian white noise is by definition equidistributed among all
modes and the amplitude of the coefficients is given by its rm.s.,
whatever the functional basis one considers.

Therefore the coefficients of a noisy signal whose amplitudes are larger
than the r.m.s. of the noise belong to the denoised signal. This
procedure corresponds to nonlinear filtering.

The advantage of performing such a nonlinear filtering using the
wavelet representation is that the wavelet coefficients preserve the
space locality, since wavelets are functions localized in both physical
and spectral space.

Since we do not know a priori the r.m.s. of the noise, we have proposed
an iterative procedure which takes as first guess the r.m.s. of the noisy

signal.



Wavelet denoising algorithm

Apophatic method :

- no hypothesis on the structures,
- only hypothesis on the noise,
- simplest hypothesis as our first choice.

Hypothesis on the noise :
f,=f,+n

n Gaussian white noise,
<f,?> variance of the noisy signal,
N number of coefficients of f,,.

Wavelet decomposition :

~ J scale,
fji =< f hr[}ji > | position

Estimation of the threshold :
—\2<£’> In(N)

Wavelet reconstruction :

Efﬂw,,
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1. Application to plasma turbulence in tokamaks

r

JET, Culham (Europe) ITER (World)



Extraction of coherent structures SOL

lon density fluctuations measured by a fast reciprocating
Langmuir probe in the SOL of the tokamak Tore Supra
(Pascal Devynck, Tore-Supra, CEA-Cadarache)

2

1.5

S(t)
[A.U-]

0.5 ‘ ‘

1
s
[(A.U]
0.5
o 4‘1 ‘ \ J f . ; | A \ h
1 ' ' s

-0.5

4
t [ms]

t [ms]

Coherent Incoherent



PDF of the density fluctuations
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Total fluctuations = coherent + incoherent fluctuations




Correlation and intermittency

Scalogram Flatness versus scale
(stabilized periodogram) (from wavelet coefficients)
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Total fluctuations = coherent + incoherent fluctuations
- Farge, Schneider & Devynck, Phys. Plasmas, 13, 2006



2. Applications in 2D fluid turbulent flows

DNS
N=5122

0.2 % of coefficients
99.8 % of kinetic energy
93.6 % of enstrophy

| 99.8 % of coefficients
* 0.2 % of kinetic energy
6.4 % of enstrophy

N

Coherent flow Total flow Incoherent flow




1D cut of the vorticity field
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PDF of vorticity
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Enstrophy spectrum
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A posteriori proof of coherence

DNS
N=5122

Coherent structures are
locally (in space and time)

b_$ & 5 & o o 3 s 3 3

steady solutions of Euler equation, w = Slnh(ll))

thus, for 2D flows :
Arnold, 1965,

Joyce & Montgomery, 1973

Robert & Sommeria, 1991
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3. Application to 3D fluid turbulence

Normalized energy dissipation oo = ?

13
a=eL/u as v=>0, or Re &> oo
2 1 1 I I 1 1 1
Cac et al +
= Yeung and Zhou  x
w tJlrlrzgnez et al ;
- - - 15 kL ang et al(decaying al
Dissipation Wan% Kaneda et al., 2003
Gotohetal & | Phys. Fluids, 12, 21-24
rate a 1 Wed s Y
05 < = = (041) ———~ ®©
Transition Fully-developed turbulence T
0 b 1 1 b L 1 1
0 100 200 300 400 500 600 700 800 1200
R, R,

Dissipation rate is independent of viscosity => turbulent dissipation
How turbulent dissipation differs from viscous dissipation?



3D homogeneous isotropic turbulence
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Extraction of coherent structures in 3D flows

DNS
N=20483

with =(2Z)12

Coherent vorticity |

2.6 % N coefficients
80% enstrophy
99% energy

e ] N

Incoherent vorticity
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20 % enstrophy
1% energy

Total vorticity
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Energy spectrum
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n log k
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80% enstrophy k53 scaling, i.e. k*2 scaling, i.e.

99% energy long-range correlation energy equipartition



PDF of velocity
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Nonlinear transfers and energy fluxes
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http://wavelets.ens.fr

You can download
movies from :
‘Results’

You can download
papers from :
‘Publications’

You can download
codes from :
‘Codes’
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