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Turbulence in space plasmas 
B0 plasma (MHD) 

1.  Presence of a mean magnetic field B0 leads to an anisotropy of 
turbulent fluctuations 

2.  Plasma waves: Alfven, magnetosonic, mirror, wistlers, kinetic Alfven 
waves (KAW), etc… (wave turbulence) 

3.  No collisions : m.f.p. ~ 1 AU 
4.  In plasmas there is a number of characteristic space and temporal scales 

hydrodynamics 



Different plasma characteristic scales 

•  Larmor radius (ρi,e) and cyclotron frequency (Ωci,e) of a 
charged particle (electron or ion=proton) in a magnetic field B: 

⇢i,e =
V?i,e

⌦ci,e
; ⌦ci,e =

eB

mc

•  Inertial length λi,e (scale of the demagnetization of the particles) and 
plasma frequency (ωp) : 

�i,e =
c

!pi,e
; !2

pi,e =
4⇡ne2

mi,e

•  Debye length λD (sphere of influence of a given test charge in a 
plasma); at L>λD plasma is quasi-neutre : 

�2
D =

kBT

8⇡ne2
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Plasma Turbulence in the Heliosphere  
In situ measurements in the solar wind and planetary 

magnetospheres show omnipresence of plasma turbulence.  

[Alexandrova et al. 2008, APJ; Von Papen et al. 2014, JGR] 



Solar wind turbulent spectrum of magnetic 
fluctuations at MHD-Ion-Electron scales 

[Alexandrova, Chen, Sorriso-
Valvo, Bale, Horbury,  

2013 Space Science Rev.] 

Solar Wind Turbulence and the Role of Ion Instabilities

Fig. 9 7 solar wind spectra,
analyzed in Alexandrova et al.
(2009, 2010) under different
plasma conditions as a function
of the wave-vector k⊥
perpendicular to the magnetic
field. The spectra are superposed
with a normalization factor E0 at
scales smaller than all ion scales:
one observes divergence of the
spectra in the transition range
around the ion scales kρi and kλi

As we have discussed above, the transition to kinetic Alfvén turbulence happens at the
ion gyroradius ρi scale (Schekochihin et al. 2009; Boldyrev et al. 2012), while the dispersive
Hall effect becomes important at the ion inertial length λi . Results of Leamon et al. (2000)
and Bourouaine et al. (2012) indicate, therefore, that the Hall effect may be responsible for
the ion spectral break. Note that Bourouaine et al. (2012) analyzed Helios data only within
fast solar wind streams with βi < 1, i.e. when λi > ρi .11 It is quite natural that the largest
characteristic scale (or the smallest characteristic wave number) affects the spectrum first
(Spangler and Gwinn 1990). It will be interesting to verify these results for slow solar wind
streams and high βi regimes.

Just above the break frequency, f > fb , the spectra are quite variable. Smith et al. (2006)
show that within a narrow frequency range [0.4–0.8] Hz, the spectral index α varies between
−4 and −2. This result was obtained using ACE/FGM measurements. However, one should
be very careful while analyzing FGM data at frequencies higher than the ion break (i.e.
at f > 0.3 Hz), where the digitalization noise becomes important (Lepping et al. 1995;
Smith et al. 1998; Balogh et al. 2001). For example, in Fig. 7 the Cluster/FGM spectrum
deviates from the STAFF spectrum at f ≥ 0.7 Hz.12

Figure 9 shows several combined spectra, with Cluster/FGM data at low frequencies
and Cluster/STAFF data at f > fb . The spectra are shown as a function of the wave-vector
k⊥13. The spectra are superposed at k⊥ > kρi

, kλi
, i.e. at scales smaller than all ion scales:

while at these small scales all spectra follow the same law, around ion scales kρi
and kλi

(named here a transition range) one observes a divergence of the spectra. The origin of this
divergence is not completely clear. It is possible that ion damping (e.g. Denskat et al. 1983;
Sahraoui et al. 2010), a competition between the convective and Hall terms (Kiyani et al.

11Ion plasma beta can be expressed in terms of ion scales: βi = 2µ0nkBTi/B
2 = ρ2

i /λ2
i .

12The digitalization noise at Cluster/FGM and at ACE/FGM is nearly the same, see Smith et al. (1998),
Balogh et al. (2001).
13Cluster stays in the free solar wind not connected to the Earth’s bow-shock, while the flow-to-field angle,
θBV , is quasi-perpendicular. Therefore, only k⊥ wave vectors are well resolved.

MHD 
Ion 

scales 

Electron 
scales 

1.  What is going on close to ion and electron scales? 
2.  Which plasma scale is responsible for the ion break? 
3.  Which plasma scale plays the role of the dissipation scale?  
4.  Physical mechanisms?  
5.  Nature of turbulent fluctuations : waves or strong turbulence? 
6.  … 



Turbulence at kinetic scales 
 

1. Ion scales 



Turbulence around ion scales 
 

Magnetic field spectrum 

[Leamon et al,1998] 

- There exist a spectral “break” close to ion scales 
- Spectral variability at sub-ion scales: no universal behavior?  
- Attention: less than 1 decade is measured…  
 

[Smith et al., 2006] 



O. Alexandrova et al.

Fig. 10 Spectra of ion moments, (a) density, (b) velocity, (c) ion thermal speed, up to ∼ 3 Hz as measured by
Spektr-R/BMSW (Bright Monitor of Solar Wind) in the slow solar wind with Vsw = 365 km/s and βp ≃ 0.2.
Figure from Šafránková et al. (2013)

2013) or ion anisotropy instabilities (Gary et al. 2001; Matteini et al. 2007, 2011; Bale et al.
2009) may be responsible for the spectral variability within the transition range.

One of the important properties of the transition range is that the turbulent fluctuations
become more compressible here (Leamon et al. 1998; Alexandrova et al. 2008; Hamilton
et al. 2008; Turner et al. 2011; Salem et al. 2012; Kiyani et al. 2013). Let us define the
level of compressibility of magnetic fluctuations as δB2

∥/δB
2
tot , with δB2

tot being the total
energy of the turbulent magnetic field fluctuations at the same scale as δB∥ is estimated.
If in the inertial range the level of compressibility is about 5 %, for f > fb it can reach
30 % and it depends on the plasma beta βi (Alexandrova et al. 2008; Hamilton et al. 2008).
The increase of the compressibility at kinetic scales has been attributed to the compressive
nature of kinetic Alfvén or whistler turbulence (Gary and Smith 2009; Salem et al. 2012;
TenBarge et al. 2012). On the other hand, it can be described by the compressible Hall MHD
(Servidio et al. 2007). In particular, in the this framework, different levels of compressibility
can also explain the spectral index variations in the transition range (Alexandrova et al. 2007,
2008).

The flattening of the electron density spectrum from ∼ f −5/3 to ∼ f −1, seen in Fig. 3,
is observed within the same range of scales as the increase of the magnetic compressibility.
The shape of this flattening is consistent with the transition between MHD scale Alfvénic
turbulence and small scale KAW turbulence (Chandran et al. 2009; Chen et al. 2013a). More
recently, Šafránková et al. (2013) measured the ion density spectrum within the transition
range, finding similar results, as expected from the quasi-neutrality condition. In addition,
they showed the ion velocity and temperature spectra in this range to be steeper with slopes
around −3.4. An example of such spectra is shown in Fig. 10.

The transition range around ion scales is also characterized by magnetic fluctuations
with quasi-perpendicular wave-vectors k⊥ > k∥ and a plasma frame frequency close to zero
(Sahraoui et al. 2010; Narita et al. 2011; Roberts et al. 2013). Sahraoui et al. (2010) inter-
pret these observations as KAW turbulence, although Narita et al. (2011) found no clear
dispersion relation. Magnetic fluctuations with nearly zero frequency and k⊥ ≫ k∥ can
also be due to non-propagative coherent structures like current sheets (Veltri et al. 2005;
Greco et al. 2010; Perri et al. 2012), shocks (Salem 2000; Veltri et al. 2005; Mangeney
et al. 2001), current filaments (Rezeau et al. 1993), or Alfvén vortices propagating with a
very slow phase speed ∼ 0.1VA in the plasma frame (Petviashvili and Pokhotelov 1992;
Alexandrova 2008). Such vortices are known to be present within the ion transition range

Turbulence around ion scales 
 

Ion moments spectra 

[Safrankova et al, 2013, PRL], see as well Chris Chen’s talk 



Which ion scale is responsible for the break? 

fci = ⌦ci/2⇡ ; ⌦ci = eB/mic

[Alexandrova et al., 2013] 

⇢i =
V?i

⌦ci
; �i =

c

!pi
=

VA

⌦ci

  
§  All characteristic time and spatial ion scales are observed close to the 
spectral break point…  
§  How can we distinguish between different scales? 
§  Important in order to understand which physical mechanisms “break the 
spectrum” (e.g., if it is fci => damping of Alfven waves).  

In frequency spectrum, these scales  
appear at Doppler shifted frequencies: 

f
⇢i '

V
solar wind

⇢
i

; f
�i '

V
solar wind

�
i

Time scale 

Spatial scales 



Which ion scale is responsible for the break? 

[Alexandrova et al., 2013] 

  
§  Leamon et al. 2000 : λi 
§  Perri et al. 2010 : any of the scale/
combination of scales  
§  Bourouaine et al. 2012: λi 
§  Alex. S. (Gyro kinetics) : ρi 
§  Bruno et al. 2014: resonant k of 
parallel Alfven waves 
§  Chen et al. 2014: beta dependent.  

Solar Wind Turbulence and the Role of Ion Instabilities

Fig. 9 7 solar wind spectra,
analyzed in Alexandrova et al.
(2009, 2010) under different
plasma conditions as a function
of the wave-vector k⊥
perpendicular to the magnetic
field. The spectra are superposed
with a normalization factor E0 at
scales smaller than all ion scales:
one observes divergence of the
spectra in the transition range
around the ion scales kρi and kλi

As we have discussed above, the transition to kinetic Alfvén turbulence happens at the
ion gyroradius ρi scale (Schekochihin et al. 2009; Boldyrev et al. 2012), while the dispersive
Hall effect becomes important at the ion inertial length λi . Results of Leamon et al. (2000)
and Bourouaine et al. (2012) indicate, therefore, that the Hall effect may be responsible for
the ion spectral break. Note that Bourouaine et al. (2012) analyzed Helios data only within
fast solar wind streams with βi < 1, i.e. when λi > ρi .11 It is quite natural that the largest
characteristic scale (or the smallest characteristic wave number) affects the spectrum first
(Spangler and Gwinn 1990). It will be interesting to verify these results for slow solar wind
streams and high βi regimes.

Just above the break frequency, f > fb , the spectra are quite variable. Smith et al. (2006)
show that within a narrow frequency range [0.4–0.8] Hz, the spectral index α varies between
−4 and −2. This result was obtained using ACE/FGM measurements. However, one should
be very careful while analyzing FGM data at frequencies higher than the ion break (i.e.
at f > 0.3 Hz), where the digitalization noise becomes important (Lepping et al. 1995;
Smith et al. 1998; Balogh et al. 2001). For example, in Fig. 7 the Cluster/FGM spectrum
deviates from the STAFF spectrum at f ≥ 0.7 Hz.12

Figure 9 shows several combined spectra, with Cluster/FGM data at low frequencies
and Cluster/STAFF data at f > fb . The spectra are shown as a function of the wave-vector
k⊥13. The spectra are superposed at k⊥ > kρi

, kλi
, i.e. at scales smaller than all ion scales:

while at these small scales all spectra follow the same law, around ion scales kρi
and kλi

(named here a transition range) one observes a divergence of the spectra. The origin of this
divergence is not completely clear. It is possible that ion damping (e.g. Denskat et al. 1983;
Sahraoui et al. 2010), a competition between the convective and Hall terms (Kiyani et al.

11Ion plasma beta can be expressed in terms of ion scales: βi = 2µ0nkBTi/B
2 = ρ2

i /λ2
i .

12The digitalization noise at Cluster/FGM and at ACE/FGM is nearly the same, see Smith et al. (1998),
Balogh et al. (2001).
13Cluster stays in the free solar wind not connected to the Earth’s bow-shock, while the flow-to-field angle,
θBV , is quasi-perpendicular. Therefore, only k⊥ wave vectors are well resolved.

⇒  The largest characteristic ion scale “breaks” 
turbulent spectrum [Chen et al. 2014].  



Statistical study of ion transition 
A tentative to make a large statistical study with 
6 years of STEREO mission measurements in 
the solar wind shows that the break point itself 

is not well defined.  
 

Most of time we have a smooth transition and 
sometime spectral bumps related to emissions 

of monochromatic Alfven waves :  

[Lion, Alexandrova, et al., in prep., 2015] 

STEREO 



Ion instabilities  

§  At ion scales: superposition of 2 different phenomena, 
turbulence and ion temperature anisotropy instabilities.    

Solar Wind Turbulence and the Role of Ion Instabilities

Fig. 12 (Left) time series data of measured proton temperature anisotropy (dots) and instability thresholds
(top panel), of magnetic (2nd panel) and velocity (3rd panel) vector fluctuations in a field-aligned coordinate
system (FAC), using 3 second measurements from the Wind/3DP instrument; red lines indicate fluctuations
parallel to the mean field B, p1 (violet) and p2 (green) represent the two perpendicular components. As the
measured proton anisotropy approaches the oblique firehose instability threshold (black dotted line in the top
panel), Alfvénic-like fluctuations are excited and visible as perpendicular magnetic and velocity perturba-
tions. (Right) the same format as left figure, but for the high ion beta regime, when the plasma conditions
were close to both, mirror and firehose instability thresholds: both types of fluctuations, Alfvénic-like and
compressive, are excited

cumulative distribution of “unstable” measurements, i.e. data points around and beyond the
theoretical instability thresholds indicated in Fig. 13 by dotted lines. The black line gives
the sum of all colored histograms. For solar wind intervals with β∥ ≥∼ 3, more than 20 %
of the intervals would be unstable. However, the magnetic field fluctuation measurements,
shown in Fig. 13, suggest that the power is enhanced well before the thresholds—hence the
effect may be much larger.

It seems that the magnetic and velocity fluctuation power is injected near the ion scales
by instabilities, whose energy source is solar wind expansion or compression, and that this
effect is dependent on the plasma β . These quasi-linear ion instabilities co-exist with the
non-linear turbulent cascade in the solar wind. Therefore, if the goal is to study cascade
physics, care must be taken when studying ion scale fluctuations, to be certain that the
plasma is very near to isotropic T⊥/T|| ∼ 1 to avoid the quasi-linear ion instabilities. Inter-
estingly, the bottom panel of Fig. 13, which shows the collisional age of protons,16 demon-
strates that the condition T⊥/T|| ∼ 1 corresponds to a solar wind plasma that is collisionally
well-processed (‘old’) and so remains ‘fluid-like’, rather than kinetic. The measurements of
‘kinetic’ turbulence must be qualified by considering the particle pressure anisotropies, and
relative drifts between protons and α-particles and protons and electrons (Chen et al. 2013b;
Perrone et al. 2013).

16The collisional age is defined as τcoll = νppR/Vsw , the Coulomb proton-proton collision frequency νpp
multiplied by the transit time (or expansion time) from the Sun to 1 AU and is an estimate of the number of
binary collisions in each plasma parcel during transit from the Sun to the spacecraft.

§  ion distribution functions f(Vi) are anisotropic => 
§  ion temperature anisotropy instabilities develop to isotropy f(Vi)  
§  => quasi-monochromatic waves at a frequency/scale close to ion scales 

Ti? 6= Tik

[Marsch et al. 1983] [Alexandrova et al. 2013] 



Ion instabilities are at ion scales 

§  At ion scales: superposition of 2 different phenomena, 
turbulence and ion temperature anisotropy instabilities.    

[Bale et al. 2009, PRL] 



Non-universal spectrum around ion scales 

[Leamon et al,1998] 
[Smith et al., 2006] 

Do ion instabilities explain completely non-
universality of the spectra just after the break?   



‘Typical’ solar wind spectrum : revisited 
[Lion et al, 2015, to be submitted] 

A particular combination of waves and coherent structures gives a clear 
break, otherwise, variable spectral shape, smooth transition, ect….  

(see as well the talk of Denise Perrone)  
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Figure 1. Upper panel: PSD (from Cluster) of the transverse and parallel
components spanning the inertial and dissipation ranges. Standardized sample
size variance errors are smaller than the markers. The search-coil sensitivity
floor PSD is obtained from the z-component (spacecraft SR2 coordinates) of
a very quiet period in the magnetotail lobes (2007/06/30 15:00–15:05 UT)
as a proxy for the instrumentation noise. Lower panel: ratio of parallel over
transverse PSDs. Horizontal dot-dashed line indicates a ratio of 1/2 where
isotropy in power occurs. Vertical dashed and dash-dotted lines indicate ρi

and ρe , respectively, Doppler-shifted to spacecraft frequency using the Taylor
hypothesis. The little blip in PSD∥ at ∼0.25 Hz (and in PSD∥/PSD⊥) is due to
the residual spacecraft (∼4 s) spin tone in the FGM signal; it is more noticeable
in PSD∥ due to the lower power in parallel fluctuations in the inertial range.
(A color version of this figure is available in the online journal.)

to this particular wavelet method and brief details of the algo-
rithms are described in the Appendix.

3. RESULTS AND DISCUSSIONS

3.1. Power Isotropy and Enhanced Magnetic Compressibility

In keeping with Parseval’s theorem for the conservation of the
L2-norm (energy conservation) the wavelet PSD for the parallel
and transverse magnetic field components is given by

PSD∥(⊥)(f ) = 2∆
N

N∑

j=1

δB2
∥(⊥)(tj , f ) , (1)

where δB⊥(tj , f ) =
√

δB2
⊥1(tj , f ) + δB2

⊥2(tj , f ) is the magni-
tude of the total transverse fluctuations at time tj and frequency
f, ∆ is the sampling period between each measurement, and N
is the sample size at each frequency f. For the Cluster interval
the PSD∥ and PSD⊥ are shown in Figure 1. The spectral indices
obtained are ≃−1.62±0.01 and ≃−1.59±0.01 for parallel and
transverse components, respectively, in the inertial range; and
≃−2.67 ± 0.01 and ≃−2.94 ± 0.01 for parallel and transverse

components respectively, in the dissipation range. The lower
panel of Figure 1 shows that not only do these results recover
the ∼9:1 anisotropy ratio of Belcher & Davis (1971), they also
show that the decrease in the anisotropy observed by Leamon
et al. (1998b), Alexandrova et al. (2008), and Hamilton et al.
(2008) in the dissipation range is actually a scale-free progres-
sion to isotropy. This progression of the anisotropy in the power
ratio PSD∥/⊥ (a measure of magnetic compressible fluctuations)
begins at the spectral break (spacecraft frequency ∼0.25 Hz),
just before the calculated ρi , and follows the power-law rela-
tionship PSD∥/⊥ ∼ f 1/3±0.05 to ρe, where isotropy in power
between the three components (one parallel and two transverse
components) is achieved. This isotropy corresponds to a value
of PSD∥/PSD⊥ = 1/2 and is indicated in the lower panel of
Figure 1. Although this enhancement of parallel, or compress-
ible, fluctuations in the dissipation range has already been com-
mented upon by various authors (Leamon et al. 1998b; Hamilton
et al. 2008; Alexandrova et al. 2008), it is normally shown to
be nearly constant (apart from in Salem et al. 2012). To our
knowledge, this is the first time that an observation of isotropy
has been noted to occur at kρe ≃ 1, although it is also strongly
suggested in the PSDs in Sahraoui et al. (2010).

The lower panel of Figure 1 is calculated from the ratio of
the averages of the parallel and transverse fluctuations to show
a measure of the anisotropy. As such it does not constitute a
proper estimate of the ensemble average of the anisotropy. A
proper measure would be to take the ratio of δB2

∥ (tj , f ) and
δB2

⊥(tj , f ) at each time tj, and then average over this ensemble
of realizations of the anisotropy. However, this is prone to
large errors induced by very large spikes caused by purely, or
nearly pure, parallel fluctuations which result in divisions by a
very small number. To overcome this problem and to obtain a
proper ensemble averaged anisotropy measure, we compute an
alternative and robust metric of the magnetic compressibility
(similar in form to the expressions in Gary & Smith 2009 and
Alexandrova et al. 2008) defined as

C∥(f ) = 1
N

N∑

j=1

δB2
∥ (tj , f )

δB2
∥ (tj , f ) + δB2

⊥(tj , f )
, (2)

i.e., the compressibility is calculated locally from the time-
dependent fluctuations and then averaged. Converting the space-
craft frequency into wavenumber using the Taylor hypothesis
and normalizing by the averaged ion gyroradius for the in-
terval, Figure 2 shows C∥(kρi) computed using the local
scale-dependent mean field. We have binned the latter into 10◦

angle bins (angle between Vsw and e∥(tj , f )) to show which
components of the k variation we are measuring with respect
to the local background (scale-dependent) magnetic field. On
the same plot, and for comparison, we have also included the
calculation of the magnetic compressibility using a global back-
ground magnetic field—the latter consists of the mean average
of the magnetic field vector over the whole interval being stud-
ied. The angle of the solar wind velocity to the background
magnetic field using this global mean field would correspond
to wavevector components at an angle of ∼75◦ to the back-
ground field, both within the inertial and dissipation ranges.
From these plots of C∥(kρi) we can see that there is not only a
large difference between C∥ calculated using a local as opposed
to a global field, there is also no significant difference between
C∥ calculated using a local field for the separate k-component
angle bins. Also, similar to the lower panel of Figure 1, in
all the curves we again see the enhancement of the magnetic
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span a much larger range of scales. It is important to note here
that we do not know what the functional form of the transition
from the convective-dominated regime to the Hall-dominated
regime is. All we know is that in the inertial range, far from
the spectral break, one can neglect the effects of the Hall term;
well below the ion-Larmor radius and well past the spectral
break we can neglect the convective term; and at kρi ≃ 1 (for
βi ∼ 1) these terms are of the same order as the other (Goossens
2003). Using the above arguments, and the latter observation
about the similar strengths of the convective and Hall terms at
kρi ≃ 1, we can make the following observation: at kρi ≃ 1 the
convective term will provide half of the fluctuation power (50%)
which we assume, from the arguments and observations above,
will be comprised of 10% fluctuations in the parallel direction;
the Hall term will contribute the other half of the fluctuation
power (50%), and 33% of these fluctuations will be in the
parallel direction. This means that the magnetic compressibility
at kρi ≃ 1 will be

C∥ ≃ 0.5 × 0.33 + 0.5 × 0.1 ≃ 0.22. (6)

This value is in excellent agreement with the value of C∥ at
kρi ≃ 1 extrapolated from the local field curves in Figure 2.

3.2. Higher-order Statistics and Intermittency

We next calculate higher-order statistics given by the structure
functions (absolute moments of the fluctuations; Kiyani et al.
2009b) for the different components of the magnetic field fluc-
tuations with respect to the local scale-dependent background
magnetic field. The mth order wavelet structure function (Farge
& Schneider 2006) is given by

Sm
∥(⊥)(τ ) = 1

N

N∑

j=1

∣∣∣∣
δB∥(⊥)(tj , τ )

√
τ

∣∣∣∣
m

, (7)

where, as detailed in the Appendix, τ = 2i∆ : i =
{0, 1, 2, 3, . . .} is the dyadic timescale parameter related to the
central frequency f used earlier, and ∆ is the sampling period.
Scale invariance is indicated by Sm

∥(⊥)(τ ) ∝ τ ζ (m), where ζ (m)
are the scaling exponents. The structure functions and corre-
sponding scaling exponents ζ (m) are shown in Figure 3 for both
the inertial and dissipation ranges using the ACE and Cluster
intervals respectively.

Similar to the results by Kiyani et al. (2009b), the higher-
order scaling in the inertial and dissipation ranges are distinct.
The inertial range shows multiexponent scaling as evidenced
by a nonlinear ζ (m) characteristic of solar wind turbulence at
MHD scales (Tu & Marsch 1995). In contrast, the dissipation
range is monoscaling, i.e., characterized by a linear ζ (m) = Hm
and a single exponent H. Notably, both parallel and transverse
fluctuations in the dissipation range show this different scaling
behavior in the inertial and dissipation ranges. However, the
scaling behavior between the different components is also
distinct, with a more pronounced difference shown in the inertial
range. The difference in the dissipation range exponents for
parallel and transverse fluctuations is simply reflecting the
different spectral exponents seen earlier in Figure 1.

Before we discuss these higher-order scaling results, we com-
plete the statistical results by finally looking scale by scale at
the individual PDFs for the transverse (e⊥1 direction) and par-
allel fluctuations. It is necessary to pick one of the transverse
directions as the combined (magnitude of) transverse fluctua-
tions are positive-definite quantities, and thus do not illustrate
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Figure 3. (a) Transverse and parallel wavelet structure functions of order 1–5
(from the bottom) and (c) resultant scaling exponents for the inertial range
using the ACE data interval. Structure functions have been vertically shifted for
clarity. (b) and (d) have descriptions similar to (a) and (c) but are from data in
the dissipation range using the Cluster data interval. These are the anisotropic
generalizations of the differences in the scaling behavior between the inertial
and dissipation ranges first shown by Kiyani et al. (2009b).
(A color version of this figure is available in the online journal.)

any symmetric/asymmetric character of the fluctuations. There
is no a priori reason, from the symmetry of the physics, for one
not to expect the fluctuations to be axisymmetrically distributed
in the plane perpendicular to the background magnetic field.
However, if we look at the separate PSDs for the two trans-
verse components of the magnetic field fluctuations (not shown
here) we will notice that this symmetry is broken and the power
in the two transverse components is distinctly different. When
we constructed our scale-dependent orthonormal bases (see the
Appendix), it was natural to involve the background guide field
as it is ubiquitously known to order the physics in magne-
tized plasmas. The other two directions perpendicular to this
are relatively arbitrary, and we naturally chose the stable mean
bulk velocity field direction, V̂sw, to form these in the manner
of Belcher & Davis (1971): an orthonormal scale-dependent
“field-velocity” coordinate system. However, the solar wind
bulk velocity field picks a preferred sampling direction (in
k-space) resulting in the reduced spectrum mentioned earlier
in the Introduction. In introducing the velocity field in such a
way, the reduced spectrum breaks the transverse axisymmetry
of the magnetic field fluctuations and introduces a measure-
ment bias (for further details, see Turner et al. 2011, who use
comparisons with MHD turbulence simulations, and a model of
transverse waves to show the importance of the spectral slope in
this broken symmetry). The magnitude of the transverse vector
is not affected by such a bias, so all our results above are ambiva-
lent to this symmetry breaking. Although the PSD of the two
transverse components differs in this respect, we can confirm
that the standardized (rescaled) PDFs for both transverse com-
ponents are nearly identical. Thus, the breaking of the transverse
axisymmetry does not affect the results presented in this paper.

The PDFs for δB∥ and δB⊥1 are shown in Figure 4,
where we have used the self-affine scaling operation
Ps(δBiσ

−1) = σP (δBi, τ ) to rescale (standardize) the
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span a much larger range of scales. It is important to note here
that we do not know what the functional form of the transition
from the convective-dominated regime to the Hall-dominated
regime is. All we know is that in the inertial range, far from
the spectral break, one can neglect the effects of the Hall term;
well below the ion-Larmor radius and well past the spectral
break we can neglect the convective term; and at kρi ≃ 1 (for
βi ∼ 1) these terms are of the same order as the other (Goossens
2003). Using the above arguments, and the latter observation
about the similar strengths of the convective and Hall terms at
kρi ≃ 1, we can make the following observation: at kρi ≃ 1 the
convective term will provide half of the fluctuation power (50%)
which we assume, from the arguments and observations above,
will be comprised of 10% fluctuations in the parallel direction;
the Hall term will contribute the other half of the fluctuation
power (50%), and 33% of these fluctuations will be in the
parallel direction. This means that the magnetic compressibility
at kρi ≃ 1 will be

C∥ ≃ 0.5 × 0.33 + 0.5 × 0.1 ≃ 0.22. (6)

This value is in excellent agreement with the value of C∥ at
kρi ≃ 1 extrapolated from the local field curves in Figure 2.

3.2. Higher-order Statistics and Intermittency

We next calculate higher-order statistics given by the structure
functions (absolute moments of the fluctuations; Kiyani et al.
2009b) for the different components of the magnetic field fluc-
tuations with respect to the local scale-dependent background
magnetic field. The mth order wavelet structure function (Farge
& Schneider 2006) is given by

Sm
∥(⊥)(τ ) = 1

N

N∑

j=1

∣∣∣∣
δB∥(⊥)(tj , τ )

√
τ

∣∣∣∣
m

, (7)

where, as detailed in the Appendix, τ = 2i∆ : i =
{0, 1, 2, 3, . . .} is the dyadic timescale parameter related to the
central frequency f used earlier, and ∆ is the sampling period.
Scale invariance is indicated by Sm

∥(⊥)(τ ) ∝ τ ζ (m), where ζ (m)
are the scaling exponents. The structure functions and corre-
sponding scaling exponents ζ (m) are shown in Figure 3 for both
the inertial and dissipation ranges using the ACE and Cluster
intervals respectively.

Similar to the results by Kiyani et al. (2009b), the higher-
order scaling in the inertial and dissipation ranges are distinct.
The inertial range shows multiexponent scaling as evidenced
by a nonlinear ζ (m) characteristic of solar wind turbulence at
MHD scales (Tu & Marsch 1995). In contrast, the dissipation
range is monoscaling, i.e., characterized by a linear ζ (m) = Hm
and a single exponent H. Notably, both parallel and transverse
fluctuations in the dissipation range show this different scaling
behavior in the inertial and dissipation ranges. However, the
scaling behavior between the different components is also
distinct, with a more pronounced difference shown in the inertial
range. The difference in the dissipation range exponents for
parallel and transverse fluctuations is simply reflecting the
different spectral exponents seen earlier in Figure 1.

Before we discuss these higher-order scaling results, we com-
plete the statistical results by finally looking scale by scale at
the individual PDFs for the transverse (e⊥1 direction) and par-
allel fluctuations. It is necessary to pick one of the transverse
directions as the combined (magnitude of) transverse fluctua-
tions are positive-definite quantities, and thus do not illustrate
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Figure 3. (a) Transverse and parallel wavelet structure functions of order 1–5
(from the bottom) and (c) resultant scaling exponents for the inertial range
using the ACE data interval. Structure functions have been vertically shifted for
clarity. (b) and (d) have descriptions similar to (a) and (c) but are from data in
the dissipation range using the Cluster data interval. These are the anisotropic
generalizations of the differences in the scaling behavior between the inertial
and dissipation ranges first shown by Kiyani et al. (2009b).
(A color version of this figure is available in the online journal.)

any symmetric/asymmetric character of the fluctuations. There
is no a priori reason, from the symmetry of the physics, for one
not to expect the fluctuations to be axisymmetrically distributed
in the plane perpendicular to the background magnetic field.
However, if we look at the separate PSDs for the two trans-
verse components of the magnetic field fluctuations (not shown
here) we will notice that this symmetry is broken and the power
in the two transverse components is distinctly different. When
we constructed our scale-dependent orthonormal bases (see the
Appendix), it was natural to involve the background guide field
as it is ubiquitously known to order the physics in magne-
tized plasmas. The other two directions perpendicular to this
are relatively arbitrary, and we naturally chose the stable mean
bulk velocity field direction, V̂sw, to form these in the manner
of Belcher & Davis (1971): an orthonormal scale-dependent
“field-velocity” coordinate system. However, the solar wind
bulk velocity field picks a preferred sampling direction (in
k-space) resulting in the reduced spectrum mentioned earlier
in the Introduction. In introducing the velocity field in such a
way, the reduced spectrum breaks the transverse axisymmetry
of the magnetic field fluctuations and introduces a measure-
ment bias (for further details, see Turner et al. 2011, who use
comparisons with MHD turbulence simulations, and a model of
transverse waves to show the importance of the spectral slope in
this broken symmetry). The magnitude of the transverse vector
is not affected by such a bias, so all our results above are ambiva-
lent to this symmetry breaking. Although the PSD of the two
transverse components differs in this respect, we can confirm
that the standardized (rescaled) PDFs for both transverse com-
ponents are nearly identical. Thus, the breaking of the transverse
axisymmetry does not affect the results presented in this paper.

The PDFs for δB∥ and δB⊥1 are shown in Figure 4,
where we have used the self-affine scaling operation
Ps(δBiσ

−1) = σP (δBi, τ ) to rescale (standardize) the
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[Kiyani et al. 2013, APJ] 



Intermittency at sub-ion scales in 
slow and fast winds 

[C. Rossi, in preparation, 2015] 



 What is going on at electron scales? 
 

•  Cluster mission : the most sensitive instrumentation 
(mag. spectrum up to 400 Hz). 

•  Cluster is devoted to magnetospheric research => 
spend short time intervals in the solar wind/orbit. 



[Alexandrova et al. 2009, PRL; 2013, SSR] 
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MHD Ion 
scales 

Electron 
scales 

Turbulent spectrum up to electron scales 

§  General spectra at MHD and between ion and electron scales (~k-2.8).  
§  Spectral variability around ion scales due to presence of ion instabilities 
[e.g. Matteini+’07, Bale+’09], and coheren structures [Lion+’15, soon] 
§  End of the cascade? Dissipation scales? 



Universal Kolmogorov’s function: 
Frisch, Turbulence: the legacy of Kolmogorov, 1996 

E(k)⇥d/�
2 = F (k⇥d)

`d: dissipation scale

⌘: viscosity

In HD turbulence, this normalization collapses spectra 
measured under different conditions. 



Universal Kolmogorov’s function: 

§  Assumption: η=Const 
§  kρi & kλi - normalizations are not efficient for collapse 
§  kρe normalization bring the spectra close to each other.  

[Alexandrova et al., 2009, PRL] `d ⇠ ⇢e

Dissipation scale? 

with dissipation scale ⇤d = ⇥i,e,�i,e

Let us try to apply this kind of normalization for sw spectra and for 
different candidates for the dissipation scale ld:   



Spectrum at kinetic scales and dissip. scale 

[Chen, Doolen, et al., 1993, PRL] 

[Alexandrova et al., 2012, APJ] 

E(k) = Ak��
exp(�k/kd)

`d ⇠ ⇢e



General spectrum at kinetic scales 

§  For different solar wind conditions we 
find a general spectrum with “fluid-like” 
roll-off spectrum at electron scales 
[Alexandrova+’12]. 
§  Electron Larmor radius seems to play 
a role of the dissipation scale in 
collisionless solar wind [Alexandrova
+’09,12; Sahraoui+10,13]  

E(k) = Ak�8/3
exp(�k�e)

[Alexandrova et al., 2012, APJ] 



Examples of different (non-universal) 
spectra at electron scales 

[Sahraoui et al., 2010, PRL] [Alexandrova et al. 2013, SSR] 

O. Alexandrova et al.

Fig. 18 (Left) Magnetic spectrum from Sahraoui et al. (2010), compared with ∼ f −2.8 for 4 ≤ f ≤ 35 Hz
and with ∼ f −3.5 for 50 ≤ f ≤ 120 Hz, the break frequency is around 40 Hz. (Right) A zoom on the high
frequency part of the spectrum on the left, fitted with ∼ f −2.6 exp (−f/f0), the exponential cut-off frequency
f0 = 90 Hz is close to the Doppler shifted ρe , f0 ≃ fρe = Vsw/2πρe . This last fitting function is equivalent
to the model (7) for wave vectors

model has five free parameters. A statistical study of the solar wind magnetic spectra at high
frequencies (f > 3 Hz) shows that α1 does not vary a lot, α1 = 2.86 ± 0.08 (Alexandrova
et al. 2012). Then the amplitudes A1 and A2 are equal at the break point. Therefore we can
fix two of the five parameters of model (8). This model has thus three free parameters, A1,
α2 and kb (in comparison with one free parameter, E0, in Eq. (7)).

Figure 18 (left) shows the frequency spectrum from (Sahraoui et al. 2010), compared at
high frequencies17, f > 3 Hz, with the double power-law model (8) with α1 ≃ 2.8, α2 ≃ 3.5
and the spectral break at fb ≃ 40 Hz. Figure 18 (right) shows the total power spectral density
for the same dataset fitted with the exponential model (6), which can be written for frequency
spectrum as ∼ f −α exp(−f/f0). The parameters of the fit are α ≃ 8/3 and the exponential
cut-off frequency f0 = 90 Hz, which is close to the Doppler shifted electron gyro-radius ρe

for this time interval. Therefore, the model (7) can be applied in this particular case as well.
In the statistical study by Alexandrova et al. (2012), the authors concluded that model

function (7) describes all observed spectra, while the double-power-law model (8) cannot
describe a large part of the observed spectra. Indeed the unique determination of the spectral
break kb with A1 = A2 at the break is not always possible because of the spectral curvature,
and for low intensity spectra there are not enough data points to allow a good determination
of α2.

The equivalence between the electron gyro-radius ρe , in the solar wind turbulence, and
the dissipation scale ℓd , in the usual fluid turbulence, can be seen also from Fig. 19 where
the Universal Kolmogorov Function E(k)ℓd/η

2 is shown as a function of kℓd (Frisch 1995;
Davidson 2004), for three different candidates for the dissipation scale ℓd , namely for ρi ,
λi and ρe; and for one time characteristic scale, namely the electron gyro-period f −1

ce . For
simplicity, the kinematic viscosity η is assumed to be constant, despite the varying plasma
conditions. One can see that the ρi and λi normalizations are not efficient to collapse the
spectra together. Normalization on λe gives the same result as for λi . At the same time,

17Cluster/Staff-SC measurements in the burst mode.



Examples of different (non-universal) 
spectra at electron scales 

[Sahraoui et al., 2009] [Lacombe et al. 2014] 

Figure 1 shows the magnetic field components measured
by FGM. Note the rotations of By coincident with a mini-
mum in the magnetic field magnitude, indicating possible
multiple current sheet crossings as the spacecraft move
from quiet solar wind (!t1 in Fig. 1) toward the bow shock.
Figure 2 shows the power spectra of the magnetic field data
from FGM and STAFF-SC, decomposed into the parallel
and the perpendicular directions with respect to the mean
IMF (defined by averaging over the time interval of Fig. 1,
see [19] and the references therein). These spectra are
calculated using a windowed Fourier transform, where a
cos3 window (having 10% width of the whole interval) is
slid to span the time series containing 4! 106 samples.
The spectra shown are the result of averaging all the
windows.

Figure 2 illustrates the good matching between the
STAFF-SC and the FGM spectra at frequencies around
1.5 Hz. However, above f " 2:5 Hz, the power in the
physical signal falls below the noise floor of the instru-
ment, so we use STAFF-SC data to analyze frequencies
above f " 2:5 Hz. Here, we merge the low frequency
FGM data with the STAFF-SC data at f ¼ 1:5 Hz.
Figure 2 shows a spectral breakpoint at f$ 0:4 Hz where
the scaling changes from a Kolmogorov spectrum f%1:62 to
f%2:5. Similar breakpoints and steep spectra have been
reported previously [2–5], but mostly attributed to energy
dissipation [2,4].

Figure 2 shows, for the first time, clear evidence that the
magnetic energy continues cascading for about two deca-
des higher in spacecraft frequency and smaller spatial
scales. Furthermore, it shows the first evidence of a second
breakpoint at f$ 35 Hz, followed by a steeper spectrum
of f%3:9. To understand the origin of these breakpoints, we

calculated the characteristic scales of the plasma, namely,
the proton and electron gyroscales and inertial lengths
defined as !p;e ¼ Vthp;e=!cp;e, "p;e ¼ VAp;e

=!cp;e, where

Vth and VA are the thermal and the Alfvén velocities, and
!cp;e are the proton and electron gyrofrequencies. Using

the Taylor frozen-in-flow hypothesis (!$ kv), these
scales are Doppler-shifted and represented in Fig. 2. The
Doppler-shifted proton and electron gyroscales fit better
with the observed breakpoints than do the proton and
electron gyrofrequencies (as has been suggested [2,3]). In
particular, the ratio of the two frequencies 35=0:4$ 90 is

very close to the ratio !p=!e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mpTp=meTe

q
$ 95.

The new breakpoint occurs at the electron gyroscale !e,
which is very close to "e (because #e $ 1). This can be
seen clearly on Fig. 3, which shows the high frequency part
of two spectra calculated from the subintervals!t1 and!t2
of Fig. 1 which have different levels of turbulence. Both
spectra show similar properties to those of Fig. 2. The
slight difference in the scaling, f%2:5 and f%2:3, is likely
to be due to the discontinuities observed on Fig. 1 and were
included in computing the spectra of Fig. 2.
To investigate the nature of the small scale turbulence

(i.e., above f!p
), we computed the spectrum of the electric

field component Ey (shown in Fig. 4). Below f!p
the

spectrum of Ey shows a high correlation with the spectrum
of Bz, and both follow a Kolmogorov scaling. For frequen-
cies around f!p

, the Ey spectrum steepens slightly up to

f$ 1:5 Hz, where it becomes essentially flat. A fit of the
spectrum in the interval f$ ½1:5; 15' Hz shows a power

FIG. 2 (color online). The parallel (black) and perpendicular
(red) magnetic spectra of FGM data (f < 33 Hz) and STAFF-SC
data (respectively, light line; green online and dark line; blue
online); 1:5< f < 225 Hz). The STAFF-SC noise level as mea-
sured in the laboratory and in-flight are plotted as dashed and
dotted lines, respectively. The straight black lines are power law
fits to the spectra. The arrows indicate characteristic frequencies
defined in the text.

FIG. 1 (color online). FGM magnetic field data measured by
Cluster 2 in the solar wind plotted in the Geocentric Solar
Ecliptic (GSE) reference frame. The vertical dotted lines delimit
two subintervals of time discussed in the text.
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[Sahraoui et al., 2013] 

Observation of spectral break of bosse at electron scales: 

What do we learn from ion scales experience?! 
- Are there any waves? 



Importance of polarization study  

�(emin,B0) < 15�

Ellipticity=1  circular RH 

SW2 foreshock SW1 

SW2 

SW1 

§  Polarized fluctuations => spectra with bumps 
§  Non-polarized fluctuations => permanent (or background) turbulence 
§  Permanent turbulence + sporadic polarized fluctuations => 
“intermediate” spectral shape (breaks, small bumps, …)   
 
§  ~ Similar picture as at ion scales…   



Polarized whistler waves  
(spectra with bumps, breaks…) 

[Lacombe et al. 2014, APJ] 
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Example of sporadic whistlers in the SW  

[Sahraoui et al., 2013] 

Phase difference in the plane perp to B0 
around 90o is a signature of whistlers: 

Background turbulence + sporadic whistler waves  
=> spectral break/knee at the frequency of whistlers 

�⇥
xy

= ⇥
y

� ⇥
x

= 90� ! RH



Role of the electron heat flux 

|Qe|>3.5 µW/m2 

[Maksimovic et al. 2005] 

Qe =
Z

m

2
UU2f(v)d3v, U = v� < v >

Electron heat flux, Qe, is a measure of the asymmetry of the electron 
distribution function f(ve). In the solar wind it is present for f(ve||).   
We find that whistlers grow with Qe.  

[Lacombe et al. 2014, APJ] 



Instability related to the electron heat flux 

Qe =
Z

m

2
UU2f(v)d3v,

U = v� < v >

Q
max

=
3
2
m

e

n
e

v3

Whistlers (diamonds) are observed at 
the threshold for the whistler heat flux 
instability (dashed line, Gary et al.,99) 

The whistler heat flux instability contributes to the regulation of 
the electron heat flux, at least for βe>3 at 1 AU. 

[Lacombe et al. 2014, APJ] 



NB: Polarization study is crucial  

�(emin,B0) < 15�

Ellipticity=1  circular RH 

SW2 foreshock SW1 

SW2 SW1 

Polarized fluctuaitons  Non-polarized Non-polarized+polarized 



General spectrum 

§  kperp
-8/3 spectrum between ion and electron 

scales can be explained by : 
-  q-perp whistler turbulence with a weak 
parallel energy transfer [Galtier+’05]; 
-  compressible Hall MHD [Alexandrova+08] 
-  compressible NL KAW fluctuations 
[Boldyrev and Perez 2012]; 

§  Exponential roll-off: 
-  Cascade model with ~k2 damping term (dissipation via linear Landau 

damping of KAW’s)  [Howes et al. 2006, 2011] 
-  Low viscosity + strong gradients => usual dissipation term is at work? 

Understanding of the spectrum at kinetic scales is still an open issue…   



§  Plasma turbulence is an important ingredient in many astrophysical systems. 
§  Solar wind is one of the best laboratories of space plasma turbulence. 
§  We resolve turbulent fluctuations from MHD (107 km) to sub-electron scales (300 
m). 
§  Turbulence nature: Alfven and whistler waves (with k||), coherent structures (kperp), 
non-coherent fluctuations (k?). KAWs?    
§  Evidence of energy exchange between waves and particles via instabilities (at ion 
and e-scales). 

§  But is there any dissipation of turbulent energy during this exchange?  
§  What is the role of coherent structures in the dissipation? Reconnection within 
coherent current sheets ?  
§  Dissipation mechanism without collisions ? 
§  Solar wind heating? 
§ …  

Conclusion and discussion 


