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An old idea  …(G I Taylor, 1921) 

Rotation-dominated flow: pressure gradient balances Coriolis force  

Ωu 2p Geostrophic balance  
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Zero (low) frequency inertial wave-packets create columnar structures  

e.g. transient Taylor column 



 

Reason: angular momentum conservation. 

 

Eddy grows and propagates at the group velocity 

of zero-frequency inertial wave packets 

 

Davidson et. al (JFM, 2006) 

Spontaneous formation of 

columnar eddy from a 

localised disturbance. 
 

Caused by spontaneous self-

focussing of radiated energy 

onto rotation axis 

 



DNS of rotating turbulence from NCAR 

Can this theory explain the ubiquitous occurrence of columnar  

vortices in rotating turbulence? 

 

The turbulence community do not think so ! …  But…  
  



Spontaneous emergence of columnar vortices in form of wave packets. 
 

 Iso-surfaces of helicity. Red is negative, green positive. 

 

Wave packets spatially segregate helicity.  
 

(h > 0 means right-handed spirals, h < 0 means left-handed) 

Initial condition consisting of a slab of turbulence at Ro ~ 0.1  



Helicity crucial for field generation in planetary dynamos 

 For dynamo action in a planet need a 

robust mechanism of:  

 

• Helicity generation 

 

• Helicity segregation (north, south) 

 

• Dynamo simulations show 
negative helicity in the north, 
positive in the south 

 

• Source of helicity hotly disputed 



Can we construct a planetary dynamo from zero-frequency inertial wave packets?  



Typical results of dynamo simulations   (Sreenivasan, 2010) 

Weakly forced  
10 times critical 

Moderately forced  

50 times critical 

 

 

Note alternating cyclones- 
anticyclones  

Note the Earth is a million times critical ! 



Results from numerical simulations with 
uniform-flux boundary  
(Sakuruba & Roberts, 2009) 

 

Note the strong equatorial jet  

Dispersion pattern of low-frequency 

inertial wave packets from a buoyant blob 

 

Note pairing of cyclone and anti-cyclone above 

and below 

 
(Davidson, Geo. J. Int. 2014)  



Buoyancy field at Ωt=0                     

Normalized uz
2 coloured by helicity  

uz iso-surfaces 



Iso-surfaces of uz (positive is 

red, negative is blue) for 

Ωt=12 
 

Davidson & Ranjan (2014) 

Submitted 
 

Compare! 
 



If we include the dynamic influence of the 

mean magnetic field, the wave packets 

become anisotropic.  

Mean magnetic field along x-axis 



Compare with the popular cartoon for geo-dynamo based on weakly-forced,  
highly-viscous simulations  



What is the source of helicity in real planets ? 

3 problems for the viscous Ekman pumping mechanism 
 

• Viscous stress is tiny, Ek ~ 10-15 

 

• Mercury, Earth, Jupiter, Saturn have similar B-fields, both 

  in structure (dipolar, aligned with Ω) and magnitude 
 

 

 

 

     This suggests similar dynamo mechanisms despite 
     different B.C.s       

       

• As forcing gets stronger, lose the ‘Swiss-watch’ 
    assembly of convection rolls 

 

More realistic model of helicity generation should be: 
• Independent of viscosity 

• Internally driven (independent of B.C.) 

• Robust but random 

How about zero-frequency inertial wave packets ? 

Planet Mercury Earth Jupiter Saturn 

5.5 x 10-6 13 x 10-6 

 
5.2 x 10-6 

 
2.2 x 10-6 

 



An old idea revisited… an inertial-wave dynamo  

• Can form a self-consistent α2-dynamo operating outside tangent cylinder 

based on inertial wave packets initiated near/on the Equatorial plane  

 

• Can deduce scaling laws for Elsasser number, Rossby number and 

magnetic Reynolds number as a function of planetary size, rotation and 

core heat flux  

 

• Results consistent with the more strongly forced numerical dynamos 
16 
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Scaling Laws for Inertial-wave α2 Dynamo  

Input: 
• α effect (modelled as on previous slide) 

 

• Curl (J X B) ~ Curl (u x B) ~ Curl (buoyancy) 

 

• Inertial wave packets dissipate before reaching mantle 

Dimensionless parameters: 

Rayleigh-type number based on average rate of working of the buoyancy force: 
 

Predictions : 





 2

2

2

~
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u

B

RC = radius of core,   λ = magnetic diffusivity 

δ = mean width of columnar vortices  
 
But, what determines δ ?  



Scaling laws cont. 

 
•   The scaling laws are consistent with results of the more rapidly 

rotating numerical simulations (Davidson, 2014) 

 

•   Predictions for Earth assuming B ~ 30 Gauss & Q ~2 T Watts: 
Ro ~ 10-5,     Magnetic energy / KE ~ 100 

 

 

 

Summary 
We have a simple, predictive cartoon of the geodynamo based on 

helicity generation by low-frequency inertial wave packets 

 

Thank You 
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  Exact integral relationships from Induction Equation  

     

    

,     

α2-Dynamo 

( r, θ, z) coordinates, λ = magnetic diffusivity, <~> = azimuthal average, 

b, v are non-axisymmetric components of B, u 

 

          Induced emf (alpha effect)   

     Resulting scaling relationships   

Assuming: 

• B varies slowly on the scale of  δ, blob size  
• axial gradients in v are very small 

• the fluctuations in velocity have maximal helicity,  

• the fluctuations are statistically homogeneous, at least locally; 

• b is much smaller than the local mean field (first order smoothing) 

ϖ = wave frequency 

 



Iso-surfaces of uz 

(positive is red, negative 

is blue) for Ωt=2-12 



Iso-surfaces of energy coloured by helicity 

(positive is red, negative is blue) for Ωt=2-10 


