Coexistence of weak and strong turbulence in incompressible Hall MHD

Romain Meyrand

LESIA Observatoire de Paris

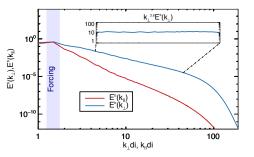
Meudon Turbulence Workshop

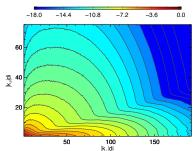
ENERGY CASCADE AND DISSIPATION IN ASTROPHYSICAL TURBULENT PLASMAS

28/04/2015

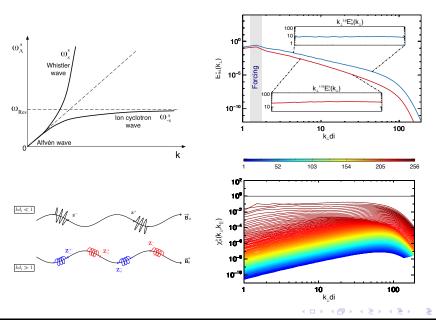
Numerical experiments of Hall MHD turbulence in the presence of a strong mean magnetic field

$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P_* + \mathbf{b} \cdot \nabla \mathbf{b} + \mathbf{f}^u + \nu_h \nabla^6 \mathbf{u} \\ \frac{\partial \mathbf{b}}{\partial t} = \nabla \times \left[(\mathbf{u} - \mathbf{d}_i \nabla \times \mathbf{b}) \times \mathbf{b} \right] + \mathbf{f}^b + \eta_h \nabla^6 \mathbf{b} \end{cases}$$





Which mode dominates the magnetic field fluctuations?



Origin of anisotropy in whistler wave turbulence

In the long time statistical behavior most of the nonlinear terms will be destroyed by random phase mixing and only a few of them – called the resonance terms – will survive.

$$\begin{cases} skk_{\parallel} + s_p pp_{\parallel} + s_q qq_{\parallel} = 0 \\ \mathbf{k} + \mathbf{p} + \mathbf{q} = 0 \end{cases} \Rightarrow \frac{s_p p - sk}{q_{\parallel}} = \frac{s_q q - s_p p}{k_{\parallel}} = \frac{sk - s_q q}{p_{\parallel}}$$

The local interaction limit simplifies the resonance conditions as follows : $(s_p - s)k_{\parallel} \sim (s_q - s_p)q_{\parallel}$.

Exact kinetic equations for EMHD at the level of three-wave interactions : $\,$

$$\partial_t E(\mathbf{k}) = \frac{\pi \varepsilon}{8} \sum_{ss_n s_n} \int \left(\frac{s_q q - s_p p}{k_{\parallel}} \right)^2 \times \{complicated \ stuff\}$$

Only the interaction between two waves with opposite polarities will contribute significantly to the nonlinear dynamics.

It implies that either $q_{\parallel} \sim 0$ or $p_{\parallel} \sim 0$.

Does the anomalous spectrum can be explained by G.I.K phenomenology?

Bicoherence Analysis

Bicoherence

$$\begin{split} C^2(\omega_k,\omega_l) &= \frac{|\left\langle \left\langle \Psi(x,\omega_k)\Psi(x,\omega_l)\Psi^*(x,\omega_{k+l})\right\rangle \right\rangle|^2}{\left\langle \left\langle |\Psi(x,\omega_k)\Psi(x,\omega_l)|^2\right\rangle \right\rangle \left\langle \left\langle |\Psi^*(x,\omega_{k+l})|^2\right\rangle \right\rangle} \\ \text{Schwartz's inequality} &\Rightarrow C(\omega_k,\omega_l) \in [0,1] \end{split}$$

Interpretation of bicoherence: Bicoherence measures the proportion of the signal energy at any bifrequency (k,l) that is quadratically phase coupled to k+l. A large bicoherence means that the phase difference arg $\Psi_k + \arg \Psi_l - \arg \Psi_{k+l}$ reaches a fixed value, even though each phase, when taken separately, may vary in a random way.

Examples of utilization:

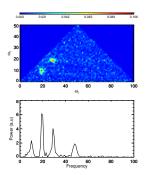
- Crack detection in aircraft, power generation plant, rail tracks, etc.
- \bullet Detection of "non-cooperative" aircraft target
- Analysis Electroencephalography
- Analysis of L-H transition in tokamak
- Analysis of gravity-capillary weak turbulence

Interpretation of bicoherence figures

$$\begin{cases} y(t) = \sum_{i=1}^{4} sin((\omega_i + \delta\omega_i)t + \phi_i) \\ \omega_1 + \omega_2 = \omega_3 \ ; \ \omega_1 - \omega_2 = \omega_4 \ ; \ \phi_{1,2} = random[-\pi, \pi] \end{cases}$$

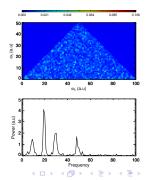
Coupled

$$\begin{cases} \phi_1 + \phi_2 = \phi_3 \\ \phi_1 - \phi_2 = \phi_4 \end{cases}$$

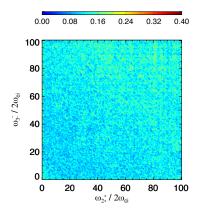


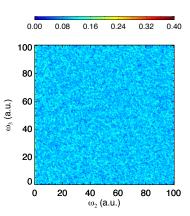
Uncoupled

$$\begin{cases} \phi_3 = random[-\pi, \pi] \\ \phi_4 = random[-\pi, \pi] \end{cases}$$

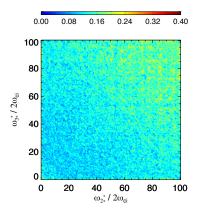


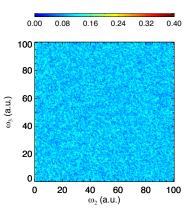
whistler \uparrow +whistler $\downarrow \Longrightarrow$ whistler \uparrow



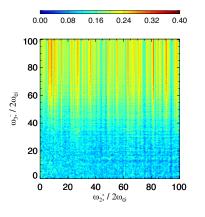


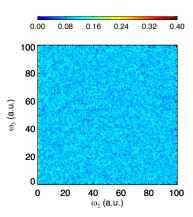
whistler \uparrow +whistler $\uparrow \Longrightarrow$ whistler \uparrow



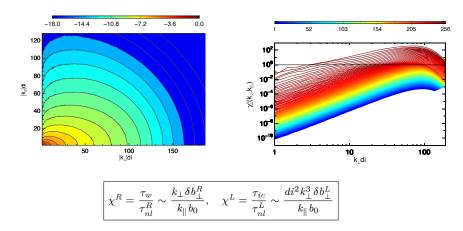


whistler \uparrow +ion cyclotron $\downarrow \Longrightarrow$ whistler \uparrow





Nature of the left handed fluctuations



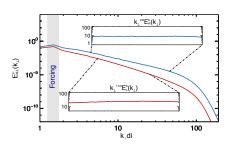
Left handed fluctuations are strongly nonlinear.

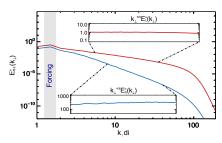
Nature of the left handed fluctuations

It is possible to show rigorously (heuristic explanation in Meyrand et al. PRL 2012):

$$\begin{cases} E_L^u(\mathbf{k}) = k^2 d_i^2 E_L^b(\mathbf{k}), \\ E_R^b(\mathbf{k}) = k^2 d_i^2 E_R^u(\mathbf{k}). \end{cases}$$

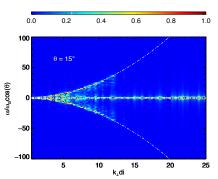
Left handed fluctuations are driven by the velocity field, right handed by the magnetic field.



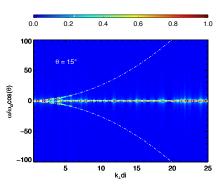


Wavenumber-frequency spectrum

Left handed fluctuations are driven by the velocity field, right handed by the magnetic field.



Wavenumber-frequency spectrum of the magnetic energy fluctuations



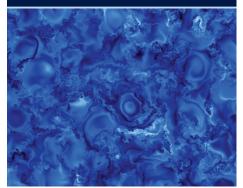
Wavenumber-frequency spectrum of the velocity energy fluctuations

CAMBRIDGE UNIVERSITY PRESS

10 May 2015

Journal of Fluid Mechanics

VOLUME 770



J. Fluid Mech. (2015), vol. 770, R1, doi:10.1017/ifm.2015.14

JFM RAPIDS journals.cambridge.org/rapids

Weak magnetohydrodynamic turbulence and intermittency

R. Meyrand¹, K. H. Kiyani^{1,2} and S. Galtier^{1,+}

¹Laboratoire de Physique des Plasmas, École Polytechnique, F-91128 Palaiseau CEDEX, France ²Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, UK

(Received 15 December 2014; revised 5 February 2015; accepted 2 March 2015)

The overall home message

A sea of weakly interacting whistler waves can be vigorously influenced by a strongly turbulent velocity field background.