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Why look for power laws ?

Basic property : scale invariance  
     
                     In the spectral domain
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Why look for power laws ?

Lots of fascinating properties 
scale-invariance (no characteristic scale) 
large deviations (rare events) 
turbulence (intermittency, energy cascades, …) 

Self-similarity is ubiquitous in plasmas 
solar flare energy distribution 
plasma turbulence 
bursty bulk flows in the magnetosphere 
photospheric magnetic field 
…
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Example: flare energy distribution
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25 Years of Self-Organized Criticality: Solar and Astrophysics

Fig. 9 Occurrence frequency
distributions of hard X-ray peak
count rates P [cts s−1] observed
with HXRBS/SMM
(1980–1989), BATSE
(1991–2000), and RHESSI
(2002–2010), with powerlaw fits.
An average pre-flare background
of 40 [cts s−1] was subtracted
from the HXRBS count rates.
Note that BATSE/CGRO has
larger detector areas, and thus
records higher count rates
(Aschwanden 2011b)

RHESSI), the following means and standard deviations of the powerlaw slopes were found
αP = 1.73 ± 0.07 for the peak fluxes (Fig. 9), αE = 1.62 ± 0.12 for the fluences or ener-
gies, and αT = 1.99 ± 0.35 for the flare durations (Aschwanden 2011b). The uncertainties
of the powerlaw slope quoted in literature generally include the formal fitting error only,
while the standard deviations given here reflect methodical and systematic uncertainties
also, since every dataset has been analyzed from different instruments and with different
analysis methods. One of the largest systematic uncertainties results from the preflare back-
ground subtraction, because the preflare flux is often not specified in solar flare catalogs.
Nevertheless, given these systematic uncertainties, the observed values are consistent with
the theoretical predictions of the basic fractal-diffusive SOC model, based on an Euclidean
space dimension of d = 3, a mean fractal dimension of D3 = 2, and classical diffusion
β = 1, which yields αP = 1.67 for peak fluxes, αE = 1.50 for energies, and αT = 2.00 for
durations (Eq. (24)). Thus, the basic fractal-diffusive SOC model predicts the correct pow-
erlaw slopes within the uncertainties of hard X-ray measurements.

Frequency-size distributions of solar flares are generally sampled from the entire Sun,
and thus from multiple active regions that are present on the visible hemisphere at a given
time. This configuration corresponds to a multi-sandpile situation, and the resulting power-
law distribution is composed of different individual active regions, which may have different
physical conditions and sizes. In particular, different sizes may cause an exponential cut-off
at the upper end of the size distribution due to finite system-size effects. A study of flare
statistics on individual active regions, however, did not reveal significant differences in their
size distributions, and thus the size distributions of individual active regions seem to follow
the universal powerlaw slopes that are invariant, individually as well as in a superimposed
ensemble (Wheatland 2000c), except for one particular active region (Wheatland 2010).

Instead of testing powerlaw slopes of size distributions, an equivalent test is a linear
regression fit among SOC parameters. For instance, statistics of WATCH/GRANAT data ex-
hibited correlations of P ∝ E0.60±0.01, T ∝ E0.53±0.02, and T ∝ P 0.54±0.03 (Georgoulis et al.
2001), which are consistent with the predictions of the standard model (Sect. 2.10), i.e.,
P ∝ E0.75, T ∝ E0.50, and T ∝ P 0.67, given the uncertainties of about ±0.15 due to data
truncation effects that are not accounted for in the linear regression fits.

Aschwanden*et*al.,*2014
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Example: cosmic ray spectrum
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25 Years of Self-Organized Criticality: Solar and Astrophysics

Fig. 28 Cosmic ray spectrum in
the energy range of
E = 109–1021 eV, covering 12
orders of magnitude. There is a
“knee” in the spectrum around
E ≈ 1016 eV, which separates
cosmic rays originating within
our galaxy (at lower energies)
and those from outside the galaxy
(at higher energies) (Credit:
Simon Swordy, University of
Chicago)

expansion of the early universe to explain the flatness and the horizon problem, could be
the manifestation of a major SOC avalanche, while a SOC scenario would predict many
intermittent inflationary phases (Moffat 1997). The critical point of a cosmological system
would be the critical density Ω = 1 that discriminates between an open (Ω < 1) and a closed
(Ω > 1) universe, independent of the initial conditions and without fine tuning of the param-
eters. A related SOC concept has also been applied to quantum gravity (Ansari and Smolin
2008). With the recent advent of string theory and multi-verses, we might even consider our
universe being only one single avalanche episode in a multi-verse SOC scenario.

3.4.9 Cosmic Rays

Cosmic rays are high-energetic particles (protons, helium nuclei, or electrons) that originate
from within our Milky Way, as well as from extragalactic space, and are detected when
they hit the Earth’s atmosphere and produce a shower of high-energy particles (muons).
The energy spectrum of cosmic rays extends over a large range of 109 eV ! E ! 1021 eV,
with an approximate powerlaw slope of αE ≈ 3.0 (Fig. 28). A closer inspection reveals
a broken powerlaw with a “knee” at Eknee ≈ 1016 eV, which separates the cosmic rays
accelerated inside our Milky Way (with a spectral slope of αE1 ≈ 2.7) and in extragalactic
space (with a slope of αE2 ≈ 3.3). The sources of cosmic rays are believed to be supernova
remnants, pulsars, pulsar-wind nebulae, and gamma-ray burst sources. The particles with
higher energies (E " Eknee) have a uniform and isotropic distribution over the sky and are
believed to originate mostly from active galactic nuclei (AGN).

High-energy particles can be accelerated by a number of physical mechanisms, e.g., by
electric fields, by shock waves, or by stochastic wave-particle interactions, such as by cy-

Cosmic#ray#
spectrum#between#
1#GeV#and#1#ZeV



Example: plasma turbulence
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Figure 1 shows the magnetic field components measured
by FGM. Note the rotations of By coincident with a mini-
mum in the magnetic field magnitude, indicating possible
multiple current sheet crossings as the spacecraft move
from quiet solar wind (!t1 in Fig. 1) toward the bow shock.
Figure 2 shows the power spectra of the magnetic field data
from FGM and STAFF-SC, decomposed into the parallel
and the perpendicular directions with respect to the mean
IMF (defined by averaging over the time interval of Fig. 1,
see [19] and the references therein). These spectra are
calculated using a windowed Fourier transform, where a
cos3 window (having 10% width of the whole interval) is
slid to span the time series containing 4! 106 samples.
The spectra shown are the result of averaging all the
windows.

Figure 2 illustrates the good matching between the
STAFF-SC and the FGM spectra at frequencies around
1.5 Hz. However, above f " 2:5 Hz, the power in the
physical signal falls below the noise floor of the instru-
ment, so we use STAFF-SC data to analyze frequencies
above f " 2:5 Hz. Here, we merge the low frequency
FGM data with the STAFF-SC data at f ¼ 1:5 Hz.
Figure 2 shows a spectral breakpoint at f$ 0:4 Hz where
the scaling changes from a Kolmogorov spectrum f%1:62 to
f%2:5. Similar breakpoints and steep spectra have been
reported previously [2–5], but mostly attributed to energy
dissipation [2,4].

Figure 2 shows, for the first time, clear evidence that the
magnetic energy continues cascading for about two deca-
des higher in spacecraft frequency and smaller spatial
scales. Furthermore, it shows the first evidence of a second
breakpoint at f$ 35 Hz, followed by a steeper spectrum
of f%3:9. To understand the origin of these breakpoints, we

calculated the characteristic scales of the plasma, namely,
the proton and electron gyroscales and inertial lengths
defined as !p;e ¼ Vthp;e=!cp;e, "p;e ¼ VAp;e

=!cp;e, where

Vth and VA are the thermal and the Alfvén velocities, and
!cp;e are the proton and electron gyrofrequencies. Using

the Taylor frozen-in-flow hypothesis (!$ kv), these
scales are Doppler-shifted and represented in Fig. 2. The
Doppler-shifted proton and electron gyroscales fit better
with the observed breakpoints than do the proton and
electron gyrofrequencies (as has been suggested [2,3]). In
particular, the ratio of the two frequencies 35=0:4$ 90 is

very close to the ratio !p=!e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mpTp=meTe

q
$ 95.

The new breakpoint occurs at the electron gyroscale !e,
which is very close to "e (because #e $ 1). This can be
seen clearly on Fig. 3, which shows the high frequency part
of two spectra calculated from the subintervals!t1 and!t2
of Fig. 1 which have different levels of turbulence. Both
spectra show similar properties to those of Fig. 2. The
slight difference in the scaling, f%2:5 and f%2:3, is likely
to be due to the discontinuities observed on Fig. 1 and were
included in computing the spectra of Fig. 2.
To investigate the nature of the small scale turbulence

(i.e., above f!p
), we computed the spectrum of the electric

field component Ey (shown in Fig. 4). Below f!p
the

spectrum of Ey shows a high correlation with the spectrum
of Bz, and both follow a Kolmogorov scaling. For frequen-
cies around f!p

, the Ey spectrum steepens slightly up to

f$ 1:5 Hz, where it becomes essentially flat. A fit of the
spectrum in the interval f$ ½1:5; 15' Hz shows a power

FIG. 2 (color online). The parallel (black) and perpendicular
(red) magnetic spectra of FGM data (f < 33 Hz) and STAFF-SC
data (respectively, light line; green online and dark line; blue
online); 1:5< f < 225 Hz). The STAFF-SC noise level as mea-
sured in the laboratory and in-flight are plotted as dashed and
dotted lines, respectively. The straight black lines are power law
fits to the spectra. The arrows indicate characteristic frequencies
defined in the text.

FIG. 1 (color online). FGM magnetic field data measured by
Cluster 2 in the solar wind plotted in the Geocentric Solar
Ecliptic (GSE) reference frame. The vertical dotted lines delimit
two subintervals of time discussed in the text.

PRL 102, 231102 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JUNE 2009

231102-2

Power#spectral#density#
of#the#magne?c#field#in#
solar#wind#turbulence



Why look for power laws ?

The power law itself is totally uninteresting
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Figure 1 shows the magnetic field components measured
by FGM. Note the rotations of By coincident with a mini-
mum in the magnetic field magnitude, indicating possible
multiple current sheet crossings as the spacecraft move
from quiet solar wind (!t1 in Fig. 1) toward the bow shock.
Figure 2 shows the power spectra of the magnetic field data
from FGM and STAFF-SC, decomposed into the parallel
and the perpendicular directions with respect to the mean
IMF (defined by averaging over the time interval of Fig. 1,
see [19] and the references therein). These spectra are
calculated using a windowed Fourier transform, where a
cos3 window (having 10% width of the whole interval) is
slid to span the time series containing 4! 106 samples.
The spectra shown are the result of averaging all the
windows.

Figure 2 illustrates the good matching between the
STAFF-SC and the FGM spectra at frequencies around
1.5 Hz. However, above f " 2:5 Hz, the power in the
physical signal falls below the noise floor of the instru-
ment, so we use STAFF-SC data to analyze frequencies
above f " 2:5 Hz. Here, we merge the low frequency
FGM data with the STAFF-SC data at f ¼ 1:5 Hz.
Figure 2 shows a spectral breakpoint at f$ 0:4 Hz where
the scaling changes from a Kolmogorov spectrum f%1:62 to
f%2:5. Similar breakpoints and steep spectra have been
reported previously [2–5], but mostly attributed to energy
dissipation [2,4].

Figure 2 shows, for the first time, clear evidence that the
magnetic energy continues cascading for about two deca-
des higher in spacecraft frequency and smaller spatial
scales. Furthermore, it shows the first evidence of a second
breakpoint at f$ 35 Hz, followed by a steeper spectrum
of f%3:9. To understand the origin of these breakpoints, we

calculated the characteristic scales of the plasma, namely,
the proton and electron gyroscales and inertial lengths
defined as !p;e ¼ Vthp;e=!cp;e, "p;e ¼ VAp;e

=!cp;e, where

Vth and VA are the thermal and the Alfvén velocities, and
!cp;e are the proton and electron gyrofrequencies. Using

the Taylor frozen-in-flow hypothesis (!$ kv), these
scales are Doppler-shifted and represented in Fig. 2. The
Doppler-shifted proton and electron gyroscales fit better
with the observed breakpoints than do the proton and
electron gyrofrequencies (as has been suggested [2,3]). In
particular, the ratio of the two frequencies 35=0:4$ 90 is

very close to the ratio !p=!e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mpTp=meTe

q
$ 95.

The new breakpoint occurs at the electron gyroscale !e,
which is very close to "e (because #e $ 1). This can be
seen clearly on Fig. 3, which shows the high frequency part
of two spectra calculated from the subintervals!t1 and!t2
of Fig. 1 which have different levels of turbulence. Both
spectra show similar properties to those of Fig. 2. The
slight difference in the scaling, f%2:5 and f%2:3, is likely
to be due to the discontinuities observed on Fig. 1 and were
included in computing the spectra of Fig. 2.
To investigate the nature of the small scale turbulence

(i.e., above f!p
), we computed the spectrum of the electric

field component Ey (shown in Fig. 4). Below f!p
the

spectrum of Ey shows a high correlation with the spectrum
of Bz, and both follow a Kolmogorov scaling. For frequen-
cies around f!p

, the Ey spectrum steepens slightly up to

f$ 1:5 Hz, where it becomes essentially flat. A fit of the
spectrum in the interval f$ ½1:5; 15' Hz shows a power

FIG. 2 (color online). The parallel (black) and perpendicular
(red) magnetic spectra of FGM data (f < 33 Hz) and STAFF-SC
data (respectively, light line; green online and dark line; blue
online); 1:5< f < 225 Hz). The STAFF-SC noise level as mea-
sured in the laboratory and in-flight are plotted as dashed and
dotted lines, respectively. The straight black lines are power law
fits to the spectra. The arrows indicate characteristic frequencies
defined in the text.

FIG. 1 (color online). FGM magnetic field data measured by
Cluster 2 in the solar wind plotted in the Geocentric Solar
Ecliptic (GSE) reference frame. The vertical dotted lines delimit
two subintervals of time discussed in the text.

PRL 102, 231102 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JUNE 2009

231102-2

What physical process gave rise to it ? 
where does the scaling start ? 
where does the scaling end ? 
what is its slope ?



Example :  
solar wind magnetic field 

recorded by Anik F1R



Solar wind observations

Anik F1R (2005-today): Canadian geostationary satellite 
experimental magnetic field sensor (fluxgate, 1 component) 
high cadence : < 200 samples / second 
some observations made in the solar wind
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Magnetic field observations

Raw data (essentially By)
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Scalogram

Modulus of continuous wavelet transform (Morlet wavelets)
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Intermittency ?

To identify intermittent bursts of activity : estimate the 
local intermittency measure  [Farge, 1992; 1996] 

Large LIM = local concentration of magnetic energy at 
scale a and time !
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B(t) �! B̃(a, ⌧) �! LIM(a, ⌧) =
|B̃(a, ⌧)|2

h|B̃(a, ⌧ 0)|2i⌧ 0

wavelet transform  
at scale a and 

time !
local 

intermittency 
measure



Scalogram

Local intermittency measure
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Power spectral density

Clear evidence for a double power law, with a break
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Disclaimer

My record was generated by a simple stochastic 
(autoregressive) process:  
no intermittency or self-similarity whatsoever! 

The true power spectral density is a log-normal one:  
no power laws here!
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Disclaimer

The true power spectral density
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Intermediate conclusion



Intermediate conclusion

We are completely fooled by our frenzy to detect 
straight lines
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The problem
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1)#Es?mate#the#power#spectral#density##

2)#Es?mate#the#slope#(spectral#index)#α

3)#Prove#that#the#power#law#model#is#indeed#appropriate

rela=vely'easy

difficult

�!
�!

|ỹ(f)|2 / f�↵

need'a'good'es=mator'
of'the'slope'α

test'against'a'null'hypothesis'
(«'no'power'law'model'»)



2 cases occur in practice

case 1 : data = series of events:  
their probability density function follows a power law  
(e.g. solar flare distribution) 

case 2 : data = time series:  
their power spectral density follows a power law  
(e.g. E or B field record)
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Case 1



Case 1 : the data consist of events

Example : number of Coronal Mass Ejections (CMEs) 
per apparent angular width [Robbrecht et al., ApJ 2009]
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Figure 8. Comparison of the CME widths for the two test samples. Left: in each graph a histogram of the CME widths is plotted with a bin size of 2◦. The upper panel
is based on a sample of 114 CMEs selected in the year 1998 (solar minimum) and the lower panel is based on a sample of 222 CMEs selected in the year 2000 (solar
maximum). As compared to larger statistics described in this paper, these histograms appear quite “noisy.” This is due to the limited sample size. Right: a contour plot
illustrating the correspondence between CDAW and CACTus width measurements. The line y = x is plotted in black.

Figure 9. Apparent CME width distributions, displayed per year in log–log scale. The CACTus distribution corresponds to the red curve; the CDAW distribution is
represented by the light blue curve. The distributions are not corrected for observing time.

CMEs larger than 40◦, but show a remarkable difference toward
the small side of the “angular spectrum.” The CDAW CME
widths are log-normally distributed, broadly peaked around
30◦ (e.g., Yurchyshyn et al. 2005), while the CACTus CME
widths could as well suggest a power-law behavior, meaning
that the CME widths θ would be distributed according N (θ ) =
N0θ

α with power α ≈ −1.66, where N (θ ) is the number of
events with angular extent θ , and N0 is a constant.

The question of which distribution provides the best fit to
the data (log normal, power law) cannot be decided solely on
the results presented here. The minimal CACTus-CME width
was set to 10◦, meaning that smaller events were discarded.
We, therefore, do not capture the peak in number of events
at small angles—which must exist somewhere—or the rise at
even smaller scales. However, the point we wish to stress here
is that over a range of scales from 20◦ to 120◦, the CACTus

distribution is essentially scale invariant while previous catalogs
present a broad maximum around 30◦. On the other hand, the
scale invariance for events larger than 40◦ is consistent for both
data sets, shown by the overlap of both curves. In view of
descriptive statistics, it is not so important which distribution
describes best the data, but seen in perspective of understanding
the initiation mechanism and evolution of CMEs, the type of
distribution can give hints on the scaling laws that apply to the
initiation mechanism. The power law of Figure 9 could indicate
that eruptions and restructuring of the coronal magnetic field
is a scale-invariant process: there is no typical size of a CME.
For CMEs, this would be a new result, but for other types of
coronal magnetic field restructuring it is well known. For flares,
for example, Crosby et al. (1993) have shown that a power
law of ∼ −1.6 characterizes the flare energy over 3 orders of
magnitude. The fact that exactly the same power law applies for
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Figure 7. First appearance of a CME is not always well defined. Here, we show a sequence of C2 and one C3 background subtracted images. A CME is seen erupting
from the east limb, the CACTus speed measured was around 150 km s−1. It is impossible to distinguish the background intensity prior to the event (streamer) and the
erupting CME.

3. Another underlying mechanism causing a not sharp tran-
sition in intensity from background to CME is the pre-
existence of bright material or the very slow rise of a bright
structure, prior to the eruption. This is typically the case,
for the so-called ‘streamer blowouts’ in which the streamer
material is blown away as part of the CME (see Figure 7).

4. From Figure 6 we can deduce that CACTus has a pref-
erence to detect CMEs more often early than late with
respect to CDAW. This is a consequence of erroneously
linking two sequential detections into one event. This is a
typical example where the human interpretation does prove
to be useful. CACTus detects motion in each (radial) direc-
tion independently. Using information on morphology and
speed, an observer will notice that the activity occurring si-
multaneously comprises of two events. However, even for
the observer, it is sometimes impossible to decide whether
activity distributed around the occulter is actually linked to
one another or not.

4.2. Apparent Width of CMEs

The angular width of a CME is a measure of the volume
in the corona that is “blown out.” The apparent width derived
from coronagraphic data indicate the angular size of this volume
projected onto the plane of the sky. This angular size, measured
as the angular span around the occulter, remains quasi constant
in the C2/C3 FOV, while the CME is propagating outward. This
suggests that CMEs expand radially in a self-similar manner
(Low 1982, 1984) above 2 R⊙. A popular way to envision
a CME geometrically is a circular cone (Zhao et al. 2002),
having its vertex in the source region on the solar disk and
the cone oriented in the direction of CME propagation. In
the case of a limb CME, the cone angle corresponds to the
angular span measured in projection onto the plane of the
sky. The angular width (and latitude) derived from projected
images is only an apparent quantity that depends on the CME
orientation with respect to the observer. A CME launched in a
direction close to the Sun–Earth direction appears as a “halo” or
partial halo around the occulter. In this case, the angular width
derived from the coronagraphic observation does not have a
geometrical meaning. The “cone model” is a simplified picture;
measurements of spatial parameters like CME width and latitude
are thus only proxies for CME “volume” and radial direction
respectively.

4.2.1. Error Estimate

In order to quantify how much the CME width distribution
depends on the measurement method, we compare the CME
widths for the sample of common events. CACTus measures the
largest width of the CME throughout its outward motion, and it is
thus not a function of time. In Figure 8 (left), we have plotted the
CME width histograms of the two samples in bins of 2◦, which is
the CACTus accuracy. The CACTus width distribution is peaked
around 20◦–25◦. The CDAW on the other hand shows a much
flatter distribution and measures systematically wider CMEs.
At the right a contour plot of the CACTus versus CDAW CME
widths is shown in the range [0, 200]◦. The general direction
of the bright contours match well with the y = x line. This
confirms, at least for events smaller than 120◦, that the CME
width indeed is a good parameter for estimating the angular
size and, hence, the volume of a CME. However, the large
scatter of points indicates that the width is only vaguely defined
and, thus, space for interpretation is left. For example, should
CME wave or shock signatures be included when measuring
the angular extent of the CME or not? This is not merely a
definition issue, the question is rather if an observer is capable
to make the distinction between a wave or shock pileup and
a “real” CME only based on coronagraphic white-light data.
A comparative study on “structured CMEs” by Cremades &
Bothmer (2004) shows that different measurement criteria can
lead to substantial differences in CME width measurements
(they found differences up to 200◦ with values from the CDAW
catalog). On average, they measured smaller CMEs and less
halos than CDAW, because they did not include deflections of
pre-existing structures or shock signatures. Our sample study
showed that the CME width is particularly not well defined for
CMEs exceeding 120◦, especially halo CMEs. This is consistent
with the result obtained by Burkepile et al. (2004), who found
a maximum width of 110◦ for SMM limb CMEs. Out of the
nine CACTus halo CMEs (from the sample) only two of them
were also labeled “halo” by CDAW. Inversely, CDAW lists
four halo CMEs which are not labeled halo by CACTus. As
a consequence, care has to be taken when interpreting this
parameter, especially for large CMEs.

4.2.2. CME Widths During Cycle 23

The CME width histograms of the two catalogs are shown
in log–log scale in Figure 9. They overlap quite well for



Case 1 : the data consist of events

Classical approach 
bin events to get a histogram (what bin size ?) 
fit by least-squares a line to log(# of events) vs log(width)
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This'approach'is'full'of'flaws'and'will'give'
biased'and'noisy'es=mates.'Avoid'it!
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Figure 8. Comparison of the CME widths for the two test samples. Left: in each graph a histogram of the CME widths is plotted with a bin size of 2◦. The upper panel
is based on a sample of 114 CMEs selected in the year 1998 (solar minimum) and the lower panel is based on a sample of 222 CMEs selected in the year 2000 (solar
maximum). As compared to larger statistics described in this paper, these histograms appear quite “noisy.” This is due to the limited sample size. Right: a contour plot
illustrating the correspondence between CDAW and CACTus width measurements. The line y = x is plotted in black.

Figure 9. Apparent CME width distributions, displayed per year in log–log scale. The CACTus distribution corresponds to the red curve; the CDAW distribution is
represented by the light blue curve. The distributions are not corrected for observing time.

CMEs larger than 40◦, but show a remarkable difference toward
the small side of the “angular spectrum.” The CDAW CME
widths are log-normally distributed, broadly peaked around
30◦ (e.g., Yurchyshyn et al. 2005), while the CACTus CME
widths could as well suggest a power-law behavior, meaning
that the CME widths θ would be distributed according N (θ ) =
N0θ

α with power α ≈ −1.66, where N (θ ) is the number of
events with angular extent θ , and N0 is a constant.

The question of which distribution provides the best fit to
the data (log normal, power law) cannot be decided solely on
the results presented here. The minimal CACTus-CME width
was set to 10◦, meaning that smaller events were discarded.
We, therefore, do not capture the peak in number of events
at small angles—which must exist somewhere—or the rise at
even smaller scales. However, the point we wish to stress here
is that over a range of scales from 20◦ to 120◦, the CACTus

distribution is essentially scale invariant while previous catalogs
present a broad maximum around 30◦. On the other hand, the
scale invariance for events larger than 40◦ is consistent for both
data sets, shown by the overlap of both curves. In view of
descriptive statistics, it is not so important which distribution
describes best the data, but seen in perspective of understanding
the initiation mechanism and evolution of CMEs, the type of
distribution can give hints on the scaling laws that apply to the
initiation mechanism. The power law of Figure 9 could indicate
that eruptions and restructuring of the coronal magnetic field
is a scale-invariant process: there is no typical size of a CME.
For CMEs, this would be a new result, but for other types of
coronal magnetic field restructuring it is well known. For flares,
for example, Crosby et al. (1993) have shown that a power
law of ∼ −1.6 characterizes the flare energy over 3 orders of
magnitude. The fact that exactly the same power law applies for
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Case 1 : the data consist of events

A much better estimator (unbiased, and low variance) 
[Clauset et al., SIAM review 2006] 

select the range over which a power law will be fitted 

use the maximum likelihood estimator of the slope 

whose standard error is 
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Case 1 : the data consist of events

Where does the lower bound (ymin) occur ?
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Figure 8. Comparison of the CME widths for the two test samples. Left: in each graph a histogram of the CME widths is plotted with a bin size of 2◦. The upper panel
is based on a sample of 114 CMEs selected in the year 1998 (solar minimum) and the lower panel is based on a sample of 222 CMEs selected in the year 2000 (solar
maximum). As compared to larger statistics described in this paper, these histograms appear quite “noisy.” This is due to the limited sample size. Right: a contour plot
illustrating the correspondence between CDAW and CACTus width measurements. The line y = x is plotted in black.

Figure 9. Apparent CME width distributions, displayed per year in log–log scale. The CACTus distribution corresponds to the red curve; the CDAW distribution is
represented by the light blue curve. The distributions are not corrected for observing time.

CMEs larger than 40◦, but show a remarkable difference toward
the small side of the “angular spectrum.” The CDAW CME
widths are log-normally distributed, broadly peaked around
30◦ (e.g., Yurchyshyn et al. 2005), while the CACTus CME
widths could as well suggest a power-law behavior, meaning
that the CME widths θ would be distributed according N (θ ) =
N0θ

α with power α ≈ −1.66, where N (θ ) is the number of
events with angular extent θ , and N0 is a constant.

The question of which distribution provides the best fit to
the data (log normal, power law) cannot be decided solely on
the results presented here. The minimal CACTus-CME width
was set to 10◦, meaning that smaller events were discarded.
We, therefore, do not capture the peak in number of events
at small angles—which must exist somewhere—or the rise at
even smaller scales. However, the point we wish to stress here
is that over a range of scales from 20◦ to 120◦, the CACTus

distribution is essentially scale invariant while previous catalogs
present a broad maximum around 30◦. On the other hand, the
scale invariance for events larger than 40◦ is consistent for both
data sets, shown by the overlap of both curves. In view of
descriptive statistics, it is not so important which distribution
describes best the data, but seen in perspective of understanding
the initiation mechanism and evolution of CMEs, the type of
distribution can give hints on the scaling laws that apply to the
initiation mechanism. The power law of Figure 9 could indicate
that eruptions and restructuring of the coronal magnetic field
is a scale-invariant process: there is no typical size of a CME.
For CMEs, this would be a new result, but for other types of
coronal magnetic field restructuring it is well known. For flares,
for example, Crosby et al. (1993) have shown that a power
law of ∼ −1.6 characterizes the flare energy over 3 orders of
magnitude. The fact that exactly the same power law applies for
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Case 2



Case 2 : time series

2 important steps for time series 
1) Estimate the spectral content of the time series 
2) Fit power law to the power spectral density
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Case 2: time series

Classical Fourier analysis is not optimal:  
a time series with self-similarity should be projected on 
self-similar basis functions (≠ sines) 

Discrete wavelet transform is more appropriate:  
self-similar by construction 
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Case 2: time series

Lots of different mother wavelets around 

The number of vanishing moments is a crucial parameter
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Haar'wavelet'(db1)'
1#vanishing#moment

Daubechies'db4'wavelet'
4#vanishing#moments



Case 2: time series

Fourier 

Compute transform 

Power spectral density 

•can be estimated at all 
frequencies 

•nearby values of S(f) are not 
independent
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Discrete wavelet transform 

Compute transform 

Power spectral density 

•can be estimated per octave only 
(scalej = 1, 2, 4, 8, …) 

•wavelet coefficients at nearby 
scales/positions are independent 
(very useful) 

ỹ(f) =

Z
y(t) e�j2⇡ft dt

S(f) = |ỹ(f)|2

ỹj,k =
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Sj = h|ỹj,k|2ik



Case 2: time series

Example 
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Why the order of the wavelet is important

If the mother wavelet does not have  
enough vanishing moments n 

The wavelet coefficients (|ỹj,k|2) are not  
independent anymore 

The estimate of the spectral index will be biased
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Why the order of the wavelet is important
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For'es=ma=ng'a'power'law'S(f)~f!a,''the'number'of'
vanishing'moments'must'be''''n'>'(a!1)/2
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Conclusion 
(not a fake one)



Conclusions (1/2)

1. almost any gentle curve will 
look like a line on a log-log plot 

2. plotting scalograms, local 
intermittency measures, power 
laws, etc. without proper 
statistical testing is nonsense.
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Conclusions (2/2)

For sampled data 
Use maximum likelihood estimator 
Proper estimation of upper and lower (ymin) bounds is crucial 

For time series 
Use discrete wavelet transform 
Ensure that the order of the wavelet is high enough (stay away 
from Haar) 
Power law should cover at least a decade to make sense.  

Not addressed here: 
Use statistical tests (e.g. Kolmogorov-Smirnov) to compare power law model against 
other plausible models. 

Or better, use a bayesian approach (computationally expensive) 
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